Abstract:
A switched capacitor voltage converter is provided that includes an array of switches configured to alternately switch multiple capacitors between a charge configuration in which the multiple capacitors are coupled in series with each other and in parallel with the source voltage and a discharge configuration in which a first set of capacitors having n capacitors are coupled in parallel with each other and in series with the load and a second set of capacitors having m capacitors coupled in parallel with the load.
Abstract:
Apparatus and method for acquiring and tracking a data signal are disclosed. Two different CDR circuits are configured to acquire and track data based on two different modulation schemes. While in the acquisition mode, the first CDR circuit may acquire data signal by sampling the signal at a reduced clock rate and handover to the second CDR circuit when a preamble is found. Also in the acquisition mode, the data acquisition and tracking circuit may determine the power level of the preamble signal and dynamically adjust the threshold level for the tracking period upon finding of the preamble.
Abstract:
In one example, there is disclosed herein a processor configured for interruptible atomic exclusive memory operations. For example, a load exclusive (LDEX) may be followed by a store exclusive (STREX), with the two together forming an atom. To facilitate timely handling of interrupts, the STREX operation is split into two parts. The STREX_INIT is not interruptible but has a determinate execution time because it takes a fixed number of clock cycles. The STREX_INIT sends the value out to the memory bus. It is followed by a STREX_SYNC operation that polls a flag for whether a return value is available. STREX_SYNC is interruptible, and methods are disclosed for determining whether, upon return from an interrupt, atomicity of the operation has been broken. If atomicity is broken, the instruction fails, while if atomicity is preserved, the instruction completes.
Abstract:
A duty cycle balance module (DCBM) for use with a switch mode power converter. One possible half-bridge converter embodiment includes a transformer driven to conduct current in first and second directions by first and second signals during and second half-cycles, respectively. A current limiting mechanism adjusts the duty cycles of the first and second signals when a sensed current exceeds a predetermined limit threshold. The DCBM receives signals representative of the duty cycles which would be used if there were no modification by the current limiting mechanism and signals Dact—1 and Dact—2 representative of the duty cycles that are actually used for the first and second signals, and outputs signals Dbl—1 and Dbl—2 which modify signals Dact—1 and Dact—2 as needed to dynamically balance the duty cycles of the first and second signals and thereby reduce flux imbalance in the transformer that might otherwise arise.
Abstract:
A silicon substrate is provided that may facilitate the formation of RF components more cheaply by using a silicon layer formed by the Czochralski process, and having a carrier life time killing layer deposited on the silicon layer.
Abstract:
A power converter can include an electrical isolation circuit between input and output nodes. An input signal monitor node can be provided, such as on a converter output side of the isolation circuit. In an example, a peak detection circuit can be coupled to the input signal monitor node. The output node of the power converter can be configured to supply an output power signal that is a function of an input signal at the input node. The power converter can include multiple, independently-switchable switches at one or more of the input and output sides of the isolation circuit. In an example, the power converter with the input signal monitor node can be configured as a bias supply to provide power, at the output node, to a controller circuit for a main stage power converter circuit.
Abstract:
A negative current protection system for a low side switching converter FET, for use with a switching converter arranged to operate high and low side FETs connected to an output inductor to produce an output voltage. The negative current protection system includes a current sensing circuit which produces an output Vcs that varies with the current in the high side FET, a negative current threshold generator which produces a threshold signal −Ith which represents the maximum negative current to which the low side FET is to be subjected, and a comparison circuit arranged to compare the valley portion of Vcs and -Ith and to set a flag if Vcs
Abstract:
An integrated circuit includes a component calculator configured to compute at least one component value of a highly programmable analog-to-digital converter (ADC) from at least one application parameter, and a mapping module configured to map the component value to a corresponding register setting of the ADC based on at least one process parameter, wherein the integrated circuit produces digital control signals capable of programming the ADC. In a specific embodiment, the component calculator uses an algebraic function of a normalized representation of the application parameter to approximately evaluate at least one normalized ADC coefficient. The component value is further calculated by denormalizing the normalized ADC coefficient. In another specific embodiment, the component calculator uses an algebraic function of the application parameter to calculate the component value. In some embodiments, the integrated circuit further includes a scaling module configured to scale the component value based on scaling parameters.
Abstract:
In one example implementation, the present disclosure provides a loop filter for use in a continuous-time sigma-delta analog-to-digital converter. Specifically, a capacitive feedback digital-to-analog converter path is provided at the input of a first opamp in a series of opamp integrators. The capacitive feedback digital-to-analog converter at the input of the first opamp reduces the signal content at the output of the first opamp, and thereby reduces the output swing of the first opamp. A reduction in output swing provides a more efficient loop filter.
Abstract:
A signal processing apparatus that includes a circuit in which a signal processing function is performed during a first time period, the signal processing apparatus including or being associated with a switch or a filter in a power supply to the signal processing apparatus so as to disconnect the signal processing apparatus from the power supply or to filter the power supply during a second time period that is coincident with at least part of the first time period.