Abstract:
To pick and place standard first chip size package on a base with a second chip for obtaining an appropriate stacking chip size package than the original chip size package. The package structure has a larger chip size package than the size of the traditional stacking package. Moreover, the terminal pins of the flip chip package may be located on peripheral of LGA package or on array of BGA package.
Abstract:
The present invention discloses a semiconductor packaging method, comprises steps of back lapping a processed silicon wafer to a desired thickness. Then, the dice are separated from the processed and lapped wafer into a single die. Then, the dice are picked and placed on a tool, an active surface of the dice is attached on the tool. A molding is performed to mold the dice by molding material. The tool is then removed from the dice to form a small unit. The next step is to arrange a plurality of the small units on a carrier in a matrix from. Then, a build-up layer, a re-distribution layer are formed over the dice, followed by forming solder balls on the dice. Finally, the carrier is removed.
Abstract:
A filling paste structure and process of wafer level package is disclosed. The process comprises filling an adhesive material to fill among plurality of dice and cover the plurality of dice. The pluralities of dice are adhered to glue pattern with viscosity in common state formed on a removable substrate. A rigid substrate is coated by adhesive material to adhere the dice. Then, pluralities of dice are departed from the glue pattern by a special environment after attaching the rigid base substrate.
Abstract:
A wall-mounted information appliance assembly includes an information appliance (10) defining a recess (132) therein, a pivot base (30), and a screw (40). The recess includes a plurality of spaced indents. A plurality of spaced projecting portions (33) is formed on the pivot base, and the projecting portions are partly engaged in the recess. Each projecting portion includes at least one tooth (35). The screw is for attaching the pivot base to a wall (50). The information appliance is attached to the pivot base, and is switchable between different attachment orientations with the indents of the information appliance being selectively engaged with the teeth of the pivot base.
Abstract:
A heat dissipation module includes a heat pipe and at least one fin, which is connected to and disposed on an external surface of the heat pipe. The heat pipe includes a casing, a wick and a working fluid. The casing has an accommodating space and a bottom portion. The bottom portion has an uneven surface facing the accommodating space. The wick is disposed over the uneven surface of the bottom portion and the working fluid is filled within the casing.
Abstract:
A heat-dissipating device. The heat-dissipating device includes a base, a plurality of heat-dissipating fins, and a fan. The heat-dissipating fins are disposed around the base. The base includes a first end surface and a second end surface. The first end surface contacts a heat source. The fan is disposed on the second end surface. An airflow space is formed between the heat-dissipating fins and the first end surface for airflow to pass through.
Abstract:
A heat dissipation module includes a first annular wall, a second annular wall, at least one porous structure, at least one first heat conductive structure and second heat conductive structure. The second annular wall with respect to the first annular wall, and the first annular wall and the second annular wall are jointed to form a closed chamber. The porous structure is disposed on an inner surface of the closed chamber. The first heat conductive structure is externally connected to the first annular wall and the second heat conductive structure is internally connected to the second annular wall.
Abstract:
A fast dissolving tablet. The fast dissolving tablet comprises a pharmaceutically active ingredient, a starch, a hydrophilic polymer, a surfactant, and excipients. A method of preparing the fast dissolving tablet is also disclosed.
Abstract:
This invention relates to an electrical power switch which is a two-terminal electrical power switch having a line-powered switching control mechanism. The electrical power switch is provided with first and second shunt circuits between the terminals of the power outlet. This switch for power to operate through the outlet is included in a first shunt circuit that also contains a power supply operating from current flowing through the switch when in the “ON” condition. This first power supply can power a control means to control the operative state of the switch while current flows through. When the switch is in the “OFF” state, a second power supply contained in a second shunt circuit provides power to the control means.
Abstract:
Circuits and methods to turn-on a power MOSFET switch while limiting rush current delivered to a load are disclosed. In an exemplary embodiment, a sense circuit senses when the power MOSFET is enhanced by a first level and a second level. A control circuit controls application of three drive forces to the gate of the power MOSFET in response to the sense circuit. The first drive force adjusts the voltage applied to the gate at a first rate. The second drive force adjusts the voltage applied to the gate at a second rate less than the first rate. The third drive force adjusts the voltage applied to the gate at a third rate greater than the second rate. The circuit utilizes most of the allotted turn-on time to linearly control the power MOSFET enhancement, providing optimal slew rate control and limiting the rush current delivered to the load.