Abstract:
A non-volatile memory device includes first and second strings memory cell transistors, related first and second word lines respectively connected to gates of the first string memory cell transistors, wherein respective first and second word lines are connected to commonly receive a bias voltage. The non-volatile memory device also includes dummy cell transistors connected to the first and second strings, and first and second dummy word lines configured to receive different bias voltages.
Abstract:
A flash memory device having a vertical channel structure. The flash memory device includes a substrate having a surface that extends in a first direction, a channel region having a pillar shape and extending from the substrate in a second direction that is perpendicular to the first direction, a gate dielectric layer formed around the channel region, a memory cell string comprising a plurality of transistors sequentially formed around the channel region in the second direction, wherein the gate dielectric layer is disposed between the plurality of transistors and the channel region, and a bit line connected to one of the plurality of transistors, and surrounding a side wall and an upper surface of one end of the channel region so as to directly contact the channel region.
Abstract:
A semiconductor memory device including a memory cell array, a first row decoder adjacent the memory cell array, and a second row decoder adjacent the memory cell array. A memory cell array may include first and second memory cell blocks on respective first and second semiconductor layers. The first memory cell block may include a first word line coupled to a first row of memory cells on the first semiconductor layer, the second memory cell block may include a second word line coupled to a second row of memory cells on the second semiconductor layer, and the first word line may be between the first and second semiconductor layers. The first row decoder may be configured to control the first word line, and the second row decoder may be configured to control the second word line. A first wiring may electrically connect the first row decoder and the first word line, and a second wiring may electrically connect the second row decoder and the second word line.
Abstract:
A semiconductor memory device includes: sequentially stacked first and second semiconductor layers; at least one first memory transistor disposed on the first semiconductor layer; and at least one second memory transistor disposed on the second semiconductor layer, wherein a gate electrode of the first memory transistor has a broader width than that of the second memory transistor.
Abstract:
A NAND flash memory device includes a lower semiconductor layer and an upper semiconductor layer located over the lower semiconductor layer, a first drain region and a first source region located in the lower semiconductor layer, and a second drain region and a second source region located in the upper semiconductor layer. A first gate structure is located on the lower semiconductor layer, and a second gate structure is located on the upper semiconductor layer. A bit line is located over the upper semiconductor layer, and at least one bit line plug is connected between the bit line and the first drain region, where the at least one bit line plug extends through a drain throughhole located in the upper semiconductor layer.
Abstract:
A driving method of a three-dimensional memory device having a plurality of layers is provided. One of the layers is selected. A well of the selected layer is biased with a first well voltage. A word line voltage is applied to a selected word line of the selected layer. A well of an unselected layer is biased with a second well voltage higher than the first well voltage.
Abstract:
A static random-access memory (SRAM) device may include a bulk MOS transistor on a semiconductor substrate having a source/drain region therein, an insulating layer on the bulk MOS transistor, and a thin-film transistor having a source/drain region therein on the insulating layer above the bulk MOS transistor. The device may further include a multi-layer plug between the bulk MOS transistor and the thin-film transistor. The multi-layer plug may include a semiconductor plug directly on the source/drain region of the bulk MOS transistor and extending through at least a portion of the insulating layer, and a metal plug directly on the source/drain region of the thin-film transistor and the semiconductor plug and extending through at least a portion of the insulating layer. Related methods are also discussed.
Abstract:
A one transistor DRAM device includes: a substrate with an insulating layer, a first semiconductor layer provided on the insulating layer and including a first source region and a first region which are in contact with the insulating layer and a first floating body between the first source region and the first drain region, a first gate pattern to cover the first floating body, a first interlayer dielectric to cover the first gate pattern, a second semiconductor layer provided on the first interlayer dielectric and including a second source region and a second drain region which are in contact with the first interlayer dielectric and a second floating body between the second source region and the second drain region, and a second gate pattern to cover the second floating body.
Abstract:
In one embodiment, an intrinsic single crystalline semiconductor plug is formed to pass through a lower insulating layer using a selective epitaxial growth process employing a node impurity region as a seed layer, and a single crystalline semiconductor body pattern is formed on the lower insulating layer using the intrinsic single crystalline semiconductor plug as a seed layer. When the recessed single crystalline semiconductor plug is doped with impurities having the same conductivity type as the node impurity region, a peripheral impurity region is prevented from being counter-doped. As a result, it is possible to implement a high performance semiconductor device that requires a single crystalline thin film transistor as well as a node contact structure with ohmic contact.
Abstract:
A nonvolatile memory device includes a semiconductor substrate having a first well region of a first conductivity type, and at least one semiconductor layer formed on the semiconductor substrate. A first cell array is formed on the semiconductor substrate, and a second cell array formed on the semiconductor layer. The semiconductor layer includes a second well region of the first conductivity type having a doping concentration greater than a doping concentration of the first well region of the first conductivity type. As the doping concentration of the second well region is increased, a resistance difference may be reduced between the first and second well regions.