Abstract:
A performance test system includes a measuring device to measure an object device, and a computing device having a controller to test performance of the object device based on measured data transmitted from the measuring device, wherein the controller controls to display a report setup window through which data to be reflected in a measurement report is inputted, a coordinate-system setup window through which a coordinate system is set up based on the object device, and a measuring option setup window through which options for measuring the performance of the object device are set up, controls operation of the measuring device and the object device based on the options set up through the measuring option setup window, and tests the performance of the object device based on the measured data transmitted from the measuring device according to the operation of the object device and the measuring device, and controls to display a report window to process and to output report data inputted through the report setup window and the measured data transmitted from the measuring device. The present invention provides a performance measurement system, in which performance of an object device is measured, the performance measurement is reported with measured data and various report data, and an interface convenient for a user is provided.
Abstract:
A performance test system includes a measuring device to measure an object device, and a computing device having a controller to test performance of the object device based on measured data transmitted from the measuring device, wherein the controller controls to display a report setup window through which data to be reflected in a measurement report is inputted, a coordinate-system setup window through which a coordinate system is set up based on the object device, and a measuring option setup window through which options for measuring the performance of the object device are set up, controls operation of the measuring device and the object device based on the options set up through the measuring option setup window, and tests the performance of the object device based on the measured data transmitted from the measuring device according to the operation of the object device and the measuring device, and controls to display a report window to process and to output report data inputted through the report setup window and the measured data transmitted from the measuring device. The present invention provides a performance measurement system, in which performance of an object device is measured, the performance measurement is reported with measured data and various report data, and an interface convenient for a user is provided.
Abstract:
The invention is directed to gate and capacitor dielectrics for use in making advanced high-g stack structures. According to the invention, a metal alkyamide, wherein the metal is halfnium (Hf) or zirconium (Zr) is used in a MOCVD or ALD process to create metal oxynitride or metal silicon oxynitride dielectric layers. In general, the metal oxynitride or metal silicon oxynitride layers are positioned between a silicon substrate and a doped polycrystalline silicone (Poly Si) layer.
Abstract:
A method of delivering two or more mutually-reactive reaction gases when a predetermined film is deposited on a substrate, and a shower head used in the gas delivery method, function to increase the film deposition rate while preventing formation of contaminating particles. In this method, one reaction gas is delivered toward the edge of the substrate, and the other reaction gases are delivered toward the central portion of the substrate, each of the reaction gases being delivered via an independent gas outlet to prevent the reaction gases from being mixed. In the shower head, separate passages are provided to prevent the first reaction gas from mixing with the other reaction gases by delivering the first reaction gas from outlets formed around the edge of the bottom surface of the shower head. The other reaction gases are delivered from outlets formed in the central portion of the bottom surface of the shower head. Accordingly, one of the mutually-reactive gases is delivered toward the central portion of the substrate, and the others are delivered toward the edge of the substrate.
Abstract:
A method for forming a metal interconnection filling a contact hole or a groove having a high aspect ratio, and a contact structure fabricated thereby. An interdielectric layer pattern, having a recessed region serving as a contact hole, a via hole or a groove, is formed on a semiconductor substrate. A barrier metal layer is formed on the entire surface of the resultant structure where the interdielectric layer pattern is formed. An anti-nucleation layer is selectively formed only on the non-recessed region of the barrier metal layer. The anti-nucleation layer is formed by forming a metal layer overlying the barrier metal layer in regions other than the recessed region, and then spontaneously oxidizing the metal layer in a vacuum. Also, the anti-nucleation layer may be formed by in-situ forming the barrier metal layer and the metal layer and then oxidizing the metal layer by an annealing process. Subsequently, a metal plug is selectively formed in the recessed region, surrounded by the barrier metal layer, thereby forming a metal interconnection for completely filling the contact hole or the groove having a high aspect ratio. A metal liner may be formed instead of the metal plug, followed by forming a metal layer filling the region surrounded by the metal liner, thereby forming a metal interconnection for completely filling the contact hole or groove having a high aspect ratio.
Abstract:
A barrier layer is included in an integrated circuit capacitor, between a conductive plug and a lower capacitor electrode. The barrier layer includes refractory metal and grain boundary filling material. The grain boundary filling material preferably is Ce, Zr, Y, Th, Hf, La, Al and/or oxides thereof, and is preferably less that 20 atomic percent of the barrier layer. The barrier layer can reduce and preferably prevent diffusion of oxygen, and can thereby reduce the leakage current and oxidation of the integrated circuit capacitor.
Abstract:
Interconnects for semiconductor devices are formed by forming a reaction control layer on a lower conductive layer of a semiconductor device, forming a reactive metal layer on the reaction control layer, opposite the lower conductive layer, reacting the lower conductive layer with the reactive metal layer, through the reaction control layer, to form an ohmic contact for the semiconductor device, and forming an upper conductive layer on the ohmic contact, opposite the lower conductive layer. Interconnects so formed may provide reduced contact resistance and reduced agglomeration of the ohmic contact region, independent of reaction temperatures. The reactive metal layer is preferably a refractory metal and the reaction control layer is preferably a refractory metal compound. The upper conductive layer is also preferably a refractory metal.
Abstract:
A method and an apparatus of fabricating a metal interconnection in a contact hole of a semiconductor device reduces contact resistance and improves step coverage. A contact hole is opened in an interlayer insulating film formed on a semiconductor substrate. A conductive layer used as an ohmic contact layer is formed on the interlayer insulating film including the contact hole. An upper surface of the conductive layer is nitrided to form a protective layer. An ALD (atomic layer deposition)-metal barrier layer is formed on the protective layer. The resulting metal barrier layer has good step coverage and no impurities, and the protective layer prevents defects in the conductive layer caused by precursor impurities used during the formation of the metal barrier layer.
Abstract:
A method for forming wiring layer of a semiconductor device for improving the step coverage and filling of the contact hole is disclosed. After forming an underlayer of the wiring layer on a semiconductor substrate, the surface of the underlayer is hydrogen-treated by exposing the underlayer to hydrogen plasma or hydrogen radicals to thereby H-terminate the surface portion of the underlayer. Thus, the characteristics of the underlying layer is improved. When depositing a metal such aluminum or aluminum alloy on the underlayer to thereby form a first conductive layer, large grains of the deposited metal are obtained. The step coverage of the deposited metal layer is enhanced and the mobility of the metal grains is increased. When sputtering the metal at a high temperature or when heat-treating the metal layer which has been formed at a low temperature, the filling of the metal into the contact hole is improved.
Abstract:
A method for forming a metal layer of an ultra-thin film according to metal deposition conditions and a method for forming metal wiring by filling a high aspect-ratio contact hole using cooling step prior to depositing the metal layer. In particular, the additional cooling process is performed before the process of depositing the metal layer and then the deposition process is performed in a state where the temperature of the wafer has been cooled down to a temperature in the range between -25.degree. C. and room temperature. The surface morphology of the deposited metal layer is improved and a continuous ultra-thin film can be obtained. Also, the aluminum filling characteristics in the contact hole having a high aspect-ratio are improved.