Abstract:
A method for providing widgets and a TV using the same are disclosed. The method for providing widgets includes searching for widgets related to a certain keyword or a broadcast program among widgets provided by a plurality of content providers, and displaying the searched widgets on a widget search list classified according to content provider. A user can thereby search for and use the widgets provided from various content providers more easily.
Abstract:
Provided is an optical OFDM receiver. The optical OFDM receiver receives an optical signal dependent on the nonlinearity of a transmitter. The optical OFDM receives includes an optical down converter, a nonlinearity compensator, and an OFDM demodulator. The optical down converter converts the optical signal into an electrical signal. The nonlinearity compensator filters the electrical signal, for compensating distortion which is added to the optical signal when the transmitter performs optical modulation. The OFDM demodulator demodulates the distortion-compensated electrical signal in an OFDM scheme.
Abstract:
A method for providing a graphical user interface (GUI) and an electronic device using the method are provided. The method includes forming one or more groups of GUI items other than a GUI item selected by a user, moving the GUI items in the one or more groups, and enlarging and displaying the selected item on an area formed by movement of the GUI items. Therefore, it is possible to provide a GUI which enables easy manipulation and which is displayed with superior visual effect on a screen that is relatively small in size.
Abstract:
A control device is provided. The control device includes a communication interface unit which requests and receives menu information from a broadcast receiver, a determination unit which determines a control mode of the control device, a user interface unit which displays the received menu information in a user interface window according to the determined control mode, and a control unit which, if a command to control the broadcast receiver is input through the user interface unit, controls the communication interface unit to transmit the input control command to the broadcast receiver.
Abstract:
Disclosed is a system of a dynamic range three-dimensional image, including: an optical detector including a gain control terminal capable of controlling an optical amplification gain; a pixel detecting module for detecting a pixel signal for configuring an image by receiving an output of the optical detector; a high dynamic range (HDR) generating module for acquiring a dynamic range image by generating a signal indicating a saturation degree of the pixel signal and combining the pixel signal based on the pixel signal detected by the pixel detecting module; and a gain control signal generating module generating an output signal for supplying required voltage to the gain control terminal of the optical detector based on the magnitude of the signal indicating the saturation degree of the pixel signal.
Abstract:
Disclosed are a method and an apparatus for transmitting and receiving coherent optical OFDM. The apparatus includes: a transmitted OFDM digital signal processing unit outputting an in-phase (I) component digital signal and a quadrature phase (Q) component digital signal; a digital-analog converter converting the in-phase (I)-component digital signal and the quadrature-phase (Q)-component digital signal into an in-phase (I)-component analog signal and a quadrature-phase (Q)-component analog signal, respectively; an adder adding an additional pilot tone signal to each of the in-phase (I)-component analog signal and the quadrature-phase (Q)-component analog signal outputted from the digital-analog converter; and an optical I/Q modulator up-converting the in-phase (I)-component analog signal added with the additional pilot tone signal and the quadrature-phase (Q)-component analog signal added with the additional pilot tone signal to an optical domain to output a coherent optical OFDM signal including the additional pilot tone signal.
Abstract:
Provided are an adapter assembly and method for compensating optical fibers for a length difference. The adapter assembly includes a first adapter, a second adapter, and a member. The first adapter is configured to be connected to at least one optical communication unit. The second adapter is configured to be connected to at least another optical communication unit and be coupled to the first adapter. The member is configured to be interposed between the first and second adapters for providing an optical signal transmission path between the optical communication units. Owing to the member, a length difference between optical fibers can be compensated for.
Abstract:
A method for manufacturing a tape wiring board in accordance with the present invention may employ an imprinting process in forming a wiring pattern, thereby reducing the number of processes for manufacturing a tape wiring board and allowing the manufacturing process to proceed in a single production line. Therefore, the manufacturing time and cost may he reduced. A profile of the wiring pattern may be determined by the shape of an impression pattern of a mold. This may establish the top width of inner and outer leads and incorporate tine pad pitch. Although ILB and OLB process may use an NCP, connection reliability may be established due to the soft and elastic wiring pattern.
Abstract:
A camera module includes an image sensor chip, a lens structure, a transparent substrate, an adhesive portion, and a light blocking layer. The image sensor chip includes a light receiving area and a circuit area. The lens structure is positioned on the image sensor chip and configured to allow light to enter the image sensor chip. The transparent substrate is positioned between the image sensor chip and the lens structure, the transparent substrate allowing light from the lens structure to enter the light receiving area. The adhesive portion attaches the image sensor chip and the transparent substrate, and covers the circuit area. The light blocking layer is attached to the transparent substrate to block light from entering the circuit area.
Abstract:
Provided is an optical receiver used for an optical communication system, more particularly, a polarization split-phase shift demodulation coherent optical receiver. An optical hybrid includes a first optical splitter, a phase shift waveguide, a second optical splitter, and an optical coupler. The first optical splitter splits a first input optical signal to output first output optical signals. The phase shift waveguide receives the first output optical signals and controls and outputs the first output optical signals such that the first output optical signals have different phases. The second optical splitter splits a second input optical signal to output a plurality of second output optical signals. The optical coupler couples the first output optical signals one-to-one with the second output optical signals, respectively.