摘要:
A hybrid vehicle driving system 1 of the invention includes a cylinder deactivated operation necessity determination unit for determining the necessity of a cylinder deactivated operation of an engine 6 when a required driving force required on a vehicle is smaller than a driving force of the engine 6 that runs in the cylinder deactivated operation. When the cylinder deactivated operation is determined to be unnecessary by the cylinder deactivated operation necessity determination unit, the vehicle can be driven in an EV driving by disengaging a first clutch 41 and a second clutch 42, whereas when the cylinder deactivated operation is determined to be necessary by the cylinder deactivated operation necessity determination unit, the engine 6 runs in the cylinder deactivated operation and at least one of the first clutch 42 and the second clutch 42 is engaged.
摘要:
A cylinder operation control apparatus includes: an internal combustion engine (E) which is adapted to operate in an all-cylinder activation mode and in a cylinder deactivation mode; a lift amount changing device (VT) which is associated with the internal combustion engine (E), and which enables switching between the all-cylinder activation mode and the cylinder deactivation mode by changing the amount of lifts of intake and exhaust valves (IV, EV) associated with the cylinders; a lift operating device (33) which is associated with the lift amount changing device (VT) to operate the same; a cylinder activation enforcing device (33′) which is operatively disposed between the lift amount changing device (VT) and the lift operating device (33) so as to enforce the all-cylinder activation mode as necessary.
摘要:
A control system for a hybrid vehicle, which enables the hybrid vehicle to optimally selectively use driven modes to attain excellent fuel economy and thereby make it possible to improve fuel economy. The hybrid vehicle is operated in an engine-driven mode or a motor-driven mode, and recovers electric energy for driving an electric motor, using the output from the engine. The control system calculates a driving fuel consumption amount of the engine required for driving the hybrid vehicle in the engine-driven mode and a recovering fuel consumption amount of the engine required for recovering electric energy to be consumed when the hybrid vehicle is driven in the motor-driven mode, and sets the driven mode to the motor-driven mode when the recovering fuel consumption amount is smaller than the driving fuel consumption amount, and to the engine-driven mode when the former is larger than the latter.
摘要:
A cylinder operation control apparatus includes: an internal combustion engine (E) which is adapted to operate in an all-cylinder activation mode and in a cylinder deactivation mode; a lift amount changing device (VT) which is associated with the internal combustion engine (E), and which enables switching between the all-cylinder activation mode and the cylinder deactivation mode by changing the amount of lifts of intake and exhaust valves (IV, EV) associated with the cylinders; a lift operating device (33) which is associated with the lift amount changing device (VT) to operate the same; a cylinder activation enforcing device (33′) which is operatively disposed between the lift amount changing device (VT) and the lift operating device (33) so as to enforce the all-cylinder activation mode as necessary.
摘要:
In order to improve the fuel consumption efficiency of a hybrid vehicle, a control apparatus 1 for a hybrid vehicle is provided, which comprises as a power source a motor M and an engine E capable of executing partial cylinder deactivation operation and the driving force of at least one of these is transmitted to wheels for running the vehicle. When the required output is larger than the output of the engine under partial cylinder deactivation operation, and is smaller than the total output of the engine and the motor, which is adjustable for assisting the engine, the control apparatus operates the engine under partial deactivation and adjusts the motor output so as to compensate the difference between the total output of the power source and the output of the partial cylinder deactivated engine.
摘要:
A control device for a hybrid vehicle powered from an engine and an assist motor for supplying electric power in an amount predetermined according to running conditions of the vehicle further includes means for detecting a catalyzer temperature and correcting the predetermined assist power value according to the detected catalyzer temperature when accelerating and means for preventing the idling engine from being cut off when detected catalyzer temperature is lower than a preset temperature. This control device thus realizes rapid heating of the catalyzer device to a temperature necessary for activating the catalyzer therein by adequately correcting the assist power value of the motor according to the current catalyzer temperature when accelerating and by preventing the idling engine from being cut off while the catalyzer device has a low temperature.
摘要:
The engine control system for a hybrid vehicle, according to the present invention, having an internal combustion engine and an electric motor as driving force sources, comprises: a clutch, provided between the engine and a transmission system, for disabling and enabling driving force transmission between the engine and the transmission system; clutch disengagement detector for detecting engagement/disengagement of the clutch; engine speed detector for detecting an engine speed; and fuel cutter for permitting stopping and restarting of the engine in accordance with at least a result of detection by the clutch disengagement detector among predetermined drive conditions, and cutting fuel supply to the engine when the vehicle decelerates, a fuel-supply restart engine speed at which fuel supply is resumed being set in the fuel cutter. Stopping the engine is accomplished by cutting fuel supply by the fuel cutter, and once the engine stop is initiated, even when the engine speed reaches the fuel-supply restart engine speed, fuel supply cut by the fuel cutter is maintained, and when the engine speed detected by the engine speed detector at a time of disengagement of the clutch is detected by the clutch disengagement detector is equal to or lower than a predetermined engine speed, fuel supply cut by the fuel cutter is maintained whereas when the detected engine speed is higher than the predetermined engine speed, fuel supply is restarted.
摘要:
A regeneration control device for a hybrid vehicle includes an internal combustion engine, driving wheels drivable by the internal combustion engine, a motor for additionally supplying electric power for driving the driving wheels, a transmission between the engine, motor and driving wheels and an accumulator for supplying electric power to the motor, which causes the motor to work, while braking the vehicle, as a generator whose output is returned to the accumulator which in turn stores electric energy regenerated depending upon the deceleration degree. The control device also has calculating means for determining the degree of downward slope of a road whereon the vehicle is running and correcting means for correcting a regenerable energy amount according to the downward slope determined by the calculating means when using the motor as the generator, the output of which is thus corrected and returned to charge the accumulator in such a way that the accumulator may not rapidly be charged to its full capacity, thus preventing regeneration from being ineffective due to the full charge of the accumulator.
摘要:
A combustion state-detecting system for internal combustion engines has a crank angle sensor which generates a crank angle signal with a predetermined period shorter than the firing period of the engine whenever the crankshaft rotates through a predetermined angle. A value of the rotational speed of the engine is detected whenever the crank angle signal is generated. An average value of the detected engine rotational speed is calculated over every period of one rotation of the crankshaft. A difference amount between a newest value of the average value of the detected engine rotational speed and a value of the average value calculated a predetermined number of firing periods earlier is calculated. The combustion state of the engine is detected based on the difference amount.
摘要:
A control system for an internal combustion engine for an automotive vehicle determines whether a catalytic converter arranged in the exhaust system of the engine is in a predetermined high temperature condition. When it is determined that the catalytic converter is in the predetermined high temperature condition, priority is given either to a decrease in the amount of intake air supplied to the engine or to an increase in the amount of fuel to be supplied to the engine, depending on operating conditions of the engine.