Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Nucleic acid compositions, methods of making and using such compositions that comprise modular functional groups that can be configured to provide desired functionality to different nucleotide types, through a swappable and preferably non-covalent linkage component. Such compositions are useful in a variety of applications including nucleic acid analyses.
Abstract:
Compositions, methods and systems are provided for the isolation of polymerase-nucleic acid complexes. Complexes can be separated from free enzyme by using hook molecules to target single stranded regions on the nucleic acid. Active complexes can be isolated from mixtures having both active and inactive complexes by initiating nucleic acid synthesis so as to open up a portion of a double stranded region rendering that region single stranded. Hook molecules are targeted to bind the sequences that are thus exposed. The hook molecules bound to active polymerase-nucleic acid complex are isolated, and the active polymerase-nucleic acid complexes released.
Abstract:
The present invention provides labeled phospholink nucleotides that can be used in place of naturally occurring nucleotide triphosphates or other analogs in template directed nucleic acid synthesis reactions and other nucleic acid reactions and various analyzes based thereon, including DNA sequencing, single base identification, hybridization assays, and others.
Abstract:
Methods, compositions, and systems are provided for characterization of modified nucleic acids. In certain preferred embodiments, single molecule sequencing methods are provided for identification of modified nucleotides within nucleic acid sequences. Modifications detectable by the methods provided herein include chemically modified bases, enzymatically modified bases, abasic sites, non-natural bases, secondary structures, and agents bound to a template nucleic acid.
Abstract:
Active surface coupled polymerases, surfaces that include such polymerases, and methods of making and using surface-attached polymerases are provided.
Abstract:
Methods of producing substrates having selected active chemical regions by employing elements of the substrates in assisting the localization of active chemical groups in desired regions of the substrate. The methods may include optical, chemical and/or mechanical processes for the deposition, removal, activation and/or deactivation of chemical groups in selected regions of the substrate to provide selective active regions of the substrate.
Abstract:
Compositions, kits, methods and systems for nucleotide sequencing comprising producing polymerase reactions that exhibit two kinetically observable steps within an observable phase of the polymerase reaction. Two slow step systems can be produced, for example, by selecting the appropriate polymerase enzyme, polymerase reaction conditions including cofactors, and polymerase reaction substrates including the primed template and nucleotides.
Abstract:
Provided are methods and compositions for measuring the transient binding of nucleotides and nucleotide analogs under conditions where the nucleotides or nucleotide analogs are unincorporable. The transient binding can be determined under single molecule observation conditions providing information about the kinetics of nucleotide analog sampling of the active site of the enzyme. The methods can be used for polymerase enzyme development, mechanistic understanding, and drug discovery.