Abstract:
Highly water repellent coated articles may be made by applying to a substrate a coating having dispersed therein or sprinkled thereon partially or fully fluorinated polymer microparticles. The coating includes a partially fluorinated hexafluoropropylene copolymer binder in a nonfluorinated solvent that dissolves the binder and does not dissolve the microparticles. The coating is heated sufficiently to bond the microparticles to the binder but not so much as to cause the receding water contact angle for the coating to fall below 80°.
Abstract:
The present application is directed to a method of providing a coating to a surface of an optical element of a solar energy conversion system. The method comprises contacting the surface of the optical element with an aqueous coating composition comprising water and silica nanoparticles dispersed in the water, and drying the coating composition to form a nanoparticle coating. The coating composition has a pH of the composition of 5 or higher. The coating composition comprises an aqueous continuous liquid phase; silica nanoparticles having a volume average particle diameter of 150 nanometers or less dispersed in the aqueous continuous liquid phase; and an organic polymer binder.
Abstract:
There is provided a coating composition comprising nonspherical nanoparticles; spherical nanoparticles; optionally hydrophilic groups and optional an surfactant; and a liquid medium comprising water and no greater than 30 wt % organic solvent, if present, based on the total weight of liquid medium, where at least a portion of the nonspherical nanoparticles or at least a portion of the spherical nanoparticles comprises functional groups attached to their surface through chemical bonds, wherein the functional groups comprise at least one group selected from the group consisting of epoxy group, amine group, hydroxyl, olefin, alkyne, (meth) acrylato, mercapto group, or combinations thereof. There is also provided a method for modifying a substrate surface using the coating composition and articles made therefrom.
Abstract:
Method of forming a very hydrophobic, extremely hydrophobic or superhydrophobic surface comprising depositing a composition comprising hydrophobic microparticles, hydrophobic nanoparticles, or a mixture thereof and a binder in sufficient quantity to provide a hydrophobic or a superhydrophobic surface on a substrate having a micropatterned surface having raised portions, recessed portions or a combination thereof.
Abstract:
Protective articles are provided which include a fluoropolymer film and an epoxy adhesive, borne on at least one surface of the fluoropolymer film. The Protective articles include multilayer articles comprising a) a fluoroplastic layer, in contact with b) at least one curable adhesive layer, comprising a mixture of an uncured epoxide resin and curative agents selected from the group consisting of dicyandiamide, 4,4-aminophenyl disulfide, guanidine carbonate, thiourea and combinations thereof. Most typically, the curative agent includes dicyandiamide and in some embodiments consists essentially of dicyandiamide.
Abstract:
A solid cleaner for heated surfaces is disclosed. The solid cleaner includes a solidifying agent including wax, and a cleaning agent. The solid cleaner is solid at room temperature and liquid at an elevated temperature. Methods of cleaning a heated surface and cleaning articles are also disclosed.
Abstract:
A coated article having a substrate coated with a layer of silica nanoparticles is provided. The coating is substantially uniform in thickness, durably adheres to the substrate, and provides antireflection and or hydrophilic surface properties to the substrate.
Abstract:
Functionalized solid support material with biomolecule-binding groups and uses thereof, wherein the biomolecule-binding groups include a plurality of aromatic groups, an amine group which bonds to a biomolecule through an aldehyde group, a hydrazine group which bonds to a biomolecule through an aldehyde group, or an alpha,beta-ethylenically or acetylenically unsaturated group with an electron withdrawing group.
Abstract:
A multifunctional optical film for enhancing light extraction includes a flexible substrate, a structured layer having nanoparticles of different sizes, and a backfill layer. The structured layer effectively uses microreplicated diffractive or scattering nanostructures located near enough to the light generation region to enable extraction of an evanescent wave from an organic light emitting diode (OLED) device. The backfill layer has a material having an index of refraction different from the index of refraction of the structured layer. The backfill layer also provides a planarizing layer over the structured layer in order to conform the light extraction film to a layer of an OLED display device. The film may have additional layers added to or incorporated within it to an emissive surface in order to effect additional functionalities beyond improvement of light extraction efficiency.
Abstract:
A coating composition is provided comprising a) an aqueous dispersion, having a pH of less than 7.5, of silica nanoparticles having average particle diameters of 40 nanometers or less, b) an alkoxysilane oligomer; c) a silane coupling agent, and d) optionally a metal β-diketone complexing agent. The compositions may be used to prepare coated articles wherein the coating is substantially uniform in thickness, durably adheres to the substrate, and provides hydrophilic and/or antireflection surface properties to the substrate.