Memory cells, non-volatile memory arrays, methods of operating memory cells, methods of reading to and writing from a memory cell, and methods of programming a memory cell
    91.
    发明授权
    Memory cells, non-volatile memory arrays, methods of operating memory cells, methods of reading to and writing from a memory cell, and methods of programming a memory cell 有权
    存储器单元,非易失性存储器阵列,操作存储器单元的方法,从存储器单元读取和写入的方法,以及编程存储器单元的方法

    公开(公告)号:US08537599B2

    公开(公告)日:2013-09-17

    申请号:US13612513

    申请日:2012-09-12

    Abstract: In one aspect, a method of operating a memory cell includes using different electrodes to change a programmed state of the memory cell than are used to read the programmed state of the memory cell. In one aspect, a memory cell includes first and second opposing electrodes having material received there-between. The material has first and second lateral regions of different composition relative one another. One of the first and second lateral regions is received along one of two laterally opposing edges of the material. Another of the first and second lateral regions is received along the other of said two laterally opposing edges of the material. At least one of the first and second lateral regions is capable of being repeatedly programmed to at least two different resistance states. Other aspects and implementations are disclosed.

    Abstract translation: 一方面,操作存储单元的方法包括使用不同的电极来改变存储器单元的编程状态,而不是用于读取存储器单元的编程状态。 在一个方面,存储单元包括第一和第二相对电极,其间具有接收在其间的材料。 该材料具有彼此不同组成的第一和第二横向区域。 第一和第二横向区域中的一个沿着材料的两个横向相对的边缘中的一个被接收。 第一和第二横向区域中的另一个沿着材料的所述两个横向相对的边缘中的另一个被容纳。 第一和第二横向区域中的至少一个能够被重复编程至至少两个不同的阻力状态。 公开了其他方面和实现。

    Capacitors Having Dielectric Regions That Include Multiple Metal Oxide-Comprising Materials
    94.
    发明申请
    Capacitors Having Dielectric Regions That Include Multiple Metal Oxide-Comprising Materials 有权
    具有包含多种金属氧化物的材料的介电区域的电容器

    公开(公告)号:US20120320494A1

    公开(公告)日:2012-12-20

    申请号:US13597708

    申请日:2012-08-29

    CPC classification number: H01L28/56 H01G4/10 H01L27/108

    Abstract: Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10−7 amps/cm2 at from −1.1V to +1.1V.

    Abstract translation: 公开了形成电容器的电容器和方法,其包括内部导电金属电容器电极和外部导电金属电容器电极。 电容器电介质区域被容纳在内导电金属电容电极和外导电金属电容器电极之间,并且具有不大于150埃的厚度。 公开了厚度和关系的材料的各种组合,其相互之间可以实现和导致电介质区域的介电常数k至少为35,而在-1.1V至-1.0V的范围内漏电流不大于1×10-7Aps / cm 2 + 1.1V。

    Non-Volatile Resistive Oxide Memory Cells And Methods Of Forming Non-Volatile Resistive Oxide Memory Cells
    97.
    发明申请
    Non-Volatile Resistive Oxide Memory Cells And Methods Of Forming Non-Volatile Resistive Oxide Memory Cells 有权
    非挥发性电阻氧化物记忆单元和形成非易失性电阻氧化物记忆单元的方法

    公开(公告)号:US20120241714A1

    公开(公告)日:2012-09-27

    申请号:US13488190

    申请日:2012-06-04

    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.

    Abstract translation: 形成非易失性电阻氧化物存储单元的方法包括:形成存储单元的第一导电电极作为衬底的一部分。 第一导电电极在一个平面横截面中具有垂直最外表面和在最外表面处的相对的横向最外边缘。 在第一导电电极上形成包含多电阻态金属氧化物的材料。 导电材料沉积在多电阻状态的含金属氧化物的材料上。 包含导电材料的存储单元的第二导电电极被接收在多电阻状态的含金属氧化物的材料上。 其形成包括通过导电材料的蚀刻,以在所述蚀刻结束时在一个平面截面中形成所述导电材料的相对的横向最外面的导电边缘,其在第一导电电极的相对的横向最外边缘的横向外侧接收 一个平面截面。

    Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes
    98.
    发明授权
    Methods of forming non-volatile memory cells having multi-resistive state material between conductive electrodes 有权
    在导电电极之间形成具有多电阻状态材料的非易失性存储单元的方法

    公开(公告)号:US08211743B2

    公开(公告)日:2012-07-03

    申请号:US12114096

    申请日:2008-05-02

    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.

    Abstract translation: 形成非易失性电阻氧化物存储单元的方法包括:形成存储单元的第一导电电极作为衬底的一部分。 第一导电电极在一个平面横截面中具有垂直最外表面和在最外表面处的相对的横向最外边缘。 在第一导电电极上形成包含多电阻态金属氧化物的材料。 导电材料沉积在多电阻状态的含金属氧化物的材料上。 包含导电材料的存储单元的第二导电电极被接收在多电阻状态的含金属氧化物的材料上。 其形成包括通过导电材料的蚀刻,以在所述蚀刻结束时在一个平面截面中形成所述导电材料的相对的横向最外面的导电边缘,其在第一导电电极的相对的横向最外边缘的横向外侧接收 一个平面截面。

    Memory Cells, Methods of Programming Memory Cells, and Methods of Forming Memory Cells
    100.
    发明申请
    Memory Cells, Methods of Programming Memory Cells, and Methods of Forming Memory Cells 有权
    记忆单元,记忆单元的编程方法和形成记忆单元的方法

    公开(公告)号:US20120106232A1

    公开(公告)日:2012-05-03

    申请号:US12917361

    申请日:2010-11-01

    Abstract: Some embodiments include methods of programming a memory cell. A plurality of charge carriers may be moved within the memory cell, with an average charge across the moving charge carriers having an absolute value greater than 2. Some embodiments include methods of forming and programming an ionic-transport-based memory cell. A stack is formed to have programmable material between first and second electrodes. The programmable material has mobile ions which are moved within the programmable material to transform the programmable material from one memory state to another. An average charge across the moving mobile ions has an absolute value greater than 2. Some embodiments include memory cells with programmable material between first and second electrodes. The programmable material includes an aluminum nitride first layer, and includes a second layer containing a mobile ion species in common with the first layer.

    Abstract translation: 一些实施例包括编程存储器单元的方法。 多个电荷载体可以在存储器单元内移动,其中跨越移动电荷载流子的绝对值大于2的平均电荷。一些实施例包括形成和编程基于离子传输的存储单元的方法。 堆叠形成为在第一和第二电极之间具有可编程材料。 可编程材料具有在可编程材料内移动的移动离子,以将可编程材料从一个存储器状态转换到另一个。 移动移动离子上的平均电荷具有大于2的绝对值。一些实施例包括在第一和第二电极之间具有可编程材料的存储单元。 可编程材料包括氮化铝第一层,并且包括含有与第一层共同的可移动离子物质的第二层。

Patent Agency Ranking