Abstract:
In one aspect, a method of operating a memory cell includes using different electrodes to change a programmed state of the memory cell than are used to read the programmed state of the memory cell. In one aspect, a memory cell includes first and second opposing electrodes having material received there-between. The material has first and second lateral regions of different composition relative one another. One of the first and second lateral regions is received along one of two laterally opposing edges of the material. Another of the first and second lateral regions is received along the other of said two laterally opposing edges of the material. At least one of the first and second lateral regions is capable of being repeatedly programmed to at least two different resistance states. Other aspects and implementations are disclosed.
Abstract:
Select devices for memory cell applications and methods of forming the same are described herein. As an example, one or more non-ohmic select devices can include at least two tunnel barrier regions formed between a first metal material and a second metal material, and a third metal material formed between each of the respective at least two tunnel barrier regions. The non-ohmic select device is a two terminal select device that supports bi-directional current flow therethrough.
Abstract:
A method of forming a crystalline Pr1-xCaxMnO3 (PCMO) material includes forming an amorphous PCMO material, crystallizing the amorphous PCMO material, and removing a portion of the crystalline PCMO material. A semiconductor structure including the crystalline PCMO material is also disclosed where the crystalline PCMO material has a thickness of less than about 50 nm. A method of forming a semiconductor device structure is also disclosed.
Abstract:
Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10−7 amps/cm2 at from −1.1V to +1.1V.
Abstract translation:公开了形成电容器的电容器和方法,其包括内部导电金属电容器电极和外部导电金属电容器电极。 电容器电介质区域被容纳在内导电金属电容电极和外导电金属电容器电极之间,并且具有不大于150埃的厚度。 公开了厚度和关系的材料的各种组合,其相互之间可以实现和导致电介质区域的介电常数k至少为35,而在-1.1V至-1.0V的范围内漏电流不大于1×10-7Aps / cm 2 + 1.1V。
Abstract:
Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10−7 amps/cm2 at from −1.1V to +1.1V.
Abstract translation:公开了形成电容器的电容器和方法,其包括内部导电金属电容器电极和外部导电金属电容器电极。 电容器电介质区域被容纳在内导电金属电容电极和外导电金属电容器电极之间,并且具有不大于150埃的厚度。 公开了厚度和关系的材料的各种组合,其相互之间可以实现和导致电介质区域的介电常数k至少为35,而在-1.1V至-1.0V的范围内漏电流不大于1×10-7Aps / cm 2 + 1.1V。
Abstract:
Capacitors and methods of forming capacitors are disclosed, and which include an inner conductive metal capacitor electrode and an outer conductive metal capacitor electrode. A capacitor dielectric region is received between the inner and the outer conductive metal capacitor electrodes and has a thickness no greater than 150 Angstroms. Various combinations of materials of thicknesses and relationships relative one another are disclosed which enables and results in the dielectric region having a dielectric constant k of at least 35 yet leakage current no greater than 1×10−7 amps/cm2 at from −1.1V to +1.1V.
Abstract translation:公开了形成电容器的电容器和方法,其包括内部导电金属电容器电极和外部导电金属电容器电极。 电容器电介质区域被容纳在内导电金属电容电极和外导电金属电容器电极之间,并且具有不大于150埃的厚度。 公开了厚度和关系的材料的各种组合,其相互之间可以实现和导致电介质区域的介电常数k至少为35,而在-1.1V至-1.0V的范围内漏电流不大于1×10-7Aps / cm 2 + 1.1V。
Abstract:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.
Abstract:
A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material. The forming thereof includes etching through the conductive material to form opposing laterally outermost conductive edges of said conductive material in the one planar cross section at the conclusion of said etching which are received laterally outward of the opposing laterally outermost edges of the first conductive electrode in the one planar cross section.
Abstract:
A method of forming a crystalline Pr1-xCaxMnO3 (PCMO) material includes forming an amorphous PCMO material, crystallizing the amorphous PCMO material, and removing a portion of the crystalline PCMO material. A semiconductor structure including the crystalline PCMO material is also disclosed where the crystalline PCMO material has a thickness of less than about 50 nm. A method of forming a semiconductor device structure is also disclosed.
Abstract:
Some embodiments include methods of programming a memory cell. A plurality of charge carriers may be moved within the memory cell, with an average charge across the moving charge carriers having an absolute value greater than 2. Some embodiments include methods of forming and programming an ionic-transport-based memory cell. A stack is formed to have programmable material between first and second electrodes. The programmable material has mobile ions which are moved within the programmable material to transform the programmable material from one memory state to another. An average charge across the moving mobile ions has an absolute value greater than 2. Some embodiments include memory cells with programmable material between first and second electrodes. The programmable material includes an aluminum nitride first layer, and includes a second layer containing a mobile ion species in common with the first layer.