摘要:
Disclosed is a compact, non-contacting device for collecting samples, and particularly minute quantities of bio-agents or particulates, from a surface. The device vibrates a region of a target surface containing the sample and collects the sample on an electrically charged pin array. The sample can be later released to a detector or other instrumentation for subsequent analysis.
摘要:
Systems and methods may provide electrical contacts to an array of substantially vertically aligned nanorods. The nanorod array may be fabricated on top of a conducting layer that serves as a bottom contact to the nanorods. A top metal contact may be applied to a plurality of nanorods of the nanorod array. The contacts may allow I/V (current/voltage) characteristics of the nanorods to be measured.
摘要:
Various exemplary embodiments of the devices and methods for this invention provide for a semiconductor structure and a method of manufacturing a semiconductor structure that includes providing an aluminum nitride nucleation layer over a substrate, providing an undoped AlGaN buffer layer over the aluminum nitride nucleation layer, providing an undoped GaN over the AlGaN buffer layer, providing a plurality of AlGaN layers over the GaN layer wherein the plurality of aluminum GaN layers comprise a first layer provided over the undoped GaN layer, a second layer provided over the first layer and the third layer provided over the second layer, providing a source electrode and a drain electrode, through the first, second and third aluminum gallium nitride layers, the source electrode and the drain electrode being in electrical contact with the gallium nitride layer and providing a gate electrode over the third aluminum gallium nitride layer.
摘要:
Input light, such as from an optical sensor or stimulus-wavelength converter, includes one or more light or dark sub-bands. The input light is transmitted, such as through a transmissive layer or transmission component, to obtain effects due to transmission with lateral variation. A detector can, for example, obtain spectral information or other photon energy information about the sub-bands due to lateral variation. For each light or dark sub-band, a transmission component can, for example, provide a respective light or dark spot, and spot position can be used to obtain spectral information such as absolute wavelength or wavelength change. A photosensing component can sense or detect transmitted light or output photons, such as with a photosensor array or a position-sensitive detector. Circuitry can use photosensed quantities to obtain, e.g. a differential signal or information about time of wavelength change.
摘要:
A technique for altering or repairing the operating state of a semiconductor device comprises field-controlled diffusion of mobile dopant atoms within the metal oxide crystal lattice. When heated (e.g., above 550 K) in the presence of an electric field (e.g., bias to ground of +/−50 V) the dopant atoms are caused to collect to form an ohmic contact, leaving a depletion region. Metal-semiconductor junction devices such as diodes, photo-diodes, photo-detectors, MESFETs, etc. may thereby be fabricated, repaired or modified.
摘要:
Response to light with laterally varying photon energy distribution is based on position, such as position on a detector of a respective light spot or intensity maximum for a wavelength or photon energy subrange. A layered structure such as a coating over the detector can produce the laterally varying distribution, such as due to a laterally varying transmission property. A differential output or quantity can be obtained using sensing results from the detector and can then be used to monitor a light source's wavelength. The light source can, for example, be a pulsed or continuous laser, in which case an optical component between the light source and the detector can be structured to prevent inhomogeneities such as speckle and also reflection back to the laser that could cause feedback. A tunable light source can be tuned in response to positions at which its light is detected.
摘要:
A semiconductor device has a heterostructure including a first layer of semiconductor oxide material. A second layer of semiconductor oxide material is formed on the first layer of semiconductor oxide material such that a two dimensional electron gas builds up at an interface between the first and second materials. A passivation layer on the outer surface stabilizes the structure. The device also has a source contact and a drain contact.
摘要:
To monitor light pulses from a light source, such as a laser, sense signals are provided to a photosensing component or array, causing photosensing during a series of one or more sense periods for the light pulse. Each light pulse can be provided through a transmission structure, such as a layered structure, that provides output light with an energy-dependent position on the photosensing component. A pulse's sensing results can be used to obtain a set of one or more differential quantities; for example, with a photosensing array, two cells of the array can be read out and compared. For a narrow band light pulse, a transmission structure can provide a spot on the photosensing component, and the light spot position can be sensed.
摘要:
An integrated circuit (IC) includes a photosensor array, some cells of which are reference cells that photosense throughout an application's energy range, while other cells of which are subrange cells that photosense within respective subranges. For example, the subrange cells can receive photons in their respective subranges from a transmission structure that has laterally varying properties, such as due to varying optical thickness. The reference cells may be uncoated or may also receive photons through a transmission structure such as a gray filter. Subrange cells and reference cells may be paired in adjacent lines across the array, such as rows. Where photon emanation can vary along a path, quantities of incident photons photosensed by subrange cells along the path can be adjusted based on quantities photosensed by their paired reference cells, such as with normalization.
摘要:
In detection and sensing, light is transmitted through layers or structures that vary laterally, such as with a constant gradient or a step-like gradient. After transmission, a position of a transmitted portion of the light or of output photons can be used to determine wavelength change or to obtain other photon energy information. The light can be received, for example, from a stimulus-wavelength converter such as an optical fiber sensor or another optical sensor. A component that propagates the light from the converter to a transmission structure can spread the light across the transmission structure's entry surface. At the exit surface of the transmission structure, photosensor components can sense or detect transmitted light or output photons, such as with a photosensor array or a position sensor. A photosensed quantity can be compared, such as with another photosensed quantity or with a calibration quantity. A differential quantity can be obtained using photosensed quantities.