Abstract:
A multilayer ceramic capacitor may include a ceramic body having a plurality of dielectric layers; first and second internal electrodes disposed in the ceramic body to be alternately exposed to the first and second end surfaces of the ceramic body, having the dielectric layers interposed therebetween; and first and second external electrodes electrically connected to the first and second internal electrodes, respectively. The first and second external electrodes may include: first and second internal conductive layers; first and second insulating layers; and first and second external conductive layers.
Abstract:
There is provided a multilayer ceramic electronic component embedded in a board including: a ceramic body including dielectric layers; an active layer including a plurality of first and second internal electrodes, having the dielectric layer therebetween, to thereby form capacitance; upper and lower cover layers formed in upper and lower portions of the active layer; and first and second external electrodes formed in both ends of the ceramic body, wherein the first external electrode includes a first base electrode and a first terminal electrode formed on the first base electrode, the second external electrode includes a second base electrode and a second terminal electrode formed on the second base electrode, and in the case that a thickness of the upper cover layer is tc1 and a thickness of the lower cover layer is tc2, 0.10≦tc1/tc2≦1.00 is satisfied.
Abstract:
There is provided a multilayer ceramic electronic part to be embedded in a board, including: a ceramic body including dielectric layers; first and second internal electrodes having first and second leads; and first and second external electrodes, wherein when lengths from edges of the first or second external electrode formed on first and second side surfaces of the ceramic body to points at which the first or second external electrode contacts the first and second leads are G1, lengths from the edges of the first or second external electrode formed on first and second side surfaces of the ceramic body to a corresponding end surface of the ceramic body are BW1, and lengths from the corresponding end surface of the ceramic body to points at which the first or second external electrode contacts the first and second leads are M1, 30 μm≦G1
Abstract:
A multilayer ceramic capacitor may include three external electrodes disposed on a mounting surface of a ceramic body so as to be spaced apart from each other. When a height of a portion of the external electrode formed on one side surface of the ceramic body in a width direction is defined as d, and a thickness of the ceramic body is defined as T, a ratio of d/T satisfies 0.10≦d/T.
Abstract translation:多层陶瓷电容器可以包括设置在陶瓷体的安装表面上以彼此间隔开的三个外部电极。 当在宽度方向上形成在陶瓷体的一个侧表面上的外部电极的一部分的高度定义为d,并且将陶瓷体的厚度定义为T时,d / T的比率满足0.10< nlE; d / T。
Abstract:
A composite electronic component may include: a composite body including a capacitor and an inductor coupled to each other, the capacitor having a ceramic body in which dielectric layers and internal electrodes facing each other with the dielectric layers interposed therebetween are stacked, and the inductor having a magnetic body in which magnetic layers having conductive patterns are stacked; an input terminal disposed on a first end surface of the composite body; an output terminal including a first output terminal disposed on a second end surface of the composite body and a second output terminal disposed on any one or more of upper and lower surfaces and a second side surface of the capacitor; and a ground terminal disposed on any one or more of the upper and lower surfaces and a first side surface of the capacitor and connected to the internal electrodes.
Abstract:
A multilayer ceramic electronic component to be embedded in a board includes: a ceramic body including dielectric layers; first and second internal electrodes formed in the ceramic body; and first-polarity external electrodes connected to the first internal electrodes, and second-polarity external electrodes connected to the second internal electrodes, wherein the number of the first-polarity external electrodes and the number of the second-polarity external electrodes may be two or more, the first-polarity and second-polarity external electrodes may include first-polarity and second-polarity base electrodes and first-polarity and second-polarity terminal electrodes formed on the first-polarity and second-polarity base electrodes, respectively, when L denotes a length of the ceramic body and W denotes a width thereof, W/L≧0.6 may be satisfied, and a width BW of each of the first-polarity and second-polarity external electrodes formed on the first and second main surfaces of the ceramic body may satisfy 150 μm≦BW≦350 μm.
Abstract:
There is provided a multilayer ceramic electronic part to be embedded in a board, the multilayer ceramic electronic part including: a ceramic body including dielectric layers; first and second internal electrodes disposed in the ceramic body; first and second external electrodes formed on the respective end portions of the ceramic body, and a third external electrode formed on first and second main surfaces of the ceramic body, wherein an outermost first internal electrode among the first internal electrodes is connected to the first and second external electrodes through at least one first via, and the second internal electrodes are connected to the third external electrode through at least one second via.
Abstract:
There is provided a multilayer ceramic electronic component to be embedded in a board, including a ceramic body including dielectric layers and having first and second main surfaces facing each other, first and second side surfaces facing each other, and first and second end surfaces facing each other, an active layer including a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body with the dielectric layers interposed therebetween, to form capacitance therein, upper and lower cover layers formed on upper and lower portions of the active layer, and first and second external electrodes formed on both end surfaces of the ceramic body, wherein when a thickness of the upper or lower cover layer is defined as tc, 4 μm≦tc≦20 μm may be satisfied.
Abstract:
There is provided a multilayer ceramic electronic component, including a ceramic body having first and second side surfaces facing each other, and first and second end surfaces facing each other; first and second internal electrodes having first and second lead portions; and first and second external electrodes extended from the first and second end surfaces of the ceramic body to the first and second side surfaces, respectively, wherein when a distance from an end portion of the first or second external electrode formed on the first or second side surface of the ceramic body to a point of the first or second external electrode connected to the first or second lead portion is defined as G, and a width of the first or second external electrode on the first or second side surface of the ceramic body is defined as BW, 30 μm≦G
Abstract:
A multilayer ceramic electronic component to be embedded in a board may include: a ceramic body in which a plurality of dielectric layers are stacked; a plurality of first and second internal electrodes alternately exposed through both end surfaces of the ceramic body, respectively, with at least one of the dielectric layers interposed therebetween; and first and second external electrodes disposed on the end surfaces of the ceramic body and electrically connected to the first and second internal electrodes, respectively. Each of the first and second external electrodes includes a first external electrode layer containing a glass component and disposed on the end surface of the ceramic body and a second external electrode layer being glass-free and covering the first external electrode layer.