摘要:
A retaining ring for chemical mechanical polishing is described. The ring has a bottom surface with non-intersecting grooves. Alternating grooves are at opposing angles to one another.
摘要:
Methods, articles of manufacture, and apparatus are provided for depositing a layer, planarizing a layer, or combinations thereof, a material layer on a substrate. In one embodiment, an article of manufacture is provided for polishing a substrate, comprising a polishing article having a polishing surface, a plurality of passages formed through the polishing article for flow of material therethrough, and a plurality of grooves disposed in the polishing surface. The article of manufacture may be used in a processing system. The article of manufacture may be used in a method for processing a substrate, comprising positioning the substrate in an electrolyte solution containing a polishing article, optionally depositing a material on the substrate by an electrochemical deposition method, and polishing the substrate with the polishing article.
摘要:
A difference between a first expected required polish time for a first substrate and a second expected required polish time for a second substrate is determined using a first pre-polish thickness and a second pre-polish thickness measured at an in-line metrology station. A duration of an initial period is determined based on the difference between the first expected required polish time and the second expected required polish time. For the initial period at a beginning of a polishing operation, no pressure is applied to whichever of the first substrate and the second substrate has a lesser expected required polish time while simultaneously pressure is applied to whichever of the first substrate and the second substrate has a greater expected required polish time. After the initial period, pressure is applied to both the first substrate and the second substrate.
摘要:
Apparatus and method for control of epitaxial growth parameters, for example during manufacture of light emitting diodes (LEDs). Embodiments include PL measurement of a group III-V film following growth while a substrate at an elevated temperature is in a transfer chamber of a multi-chamber cluster tool. In other embodiments, a film thickness measurement, a contactless resistivity measurement, and a particle and/or roughness measure is performed while the substrate is disposed in the transfer chamber. One or more of the measurements performed in the transfer chamber are temperature corrected to room temperature by estimating the elevated temperature based on emission from a GaN base layer disposed below the group III-V film. In other embodiments, temperature correction is based on an absorbance band edge of the GaN base layer determined from collected white light reflectance spectra. Temperature corrected metrology is then used to control growth processes.
摘要:
Embodiments of the present invention generally relate to an apparatus and methods for uniformly heating substrates in a processing chamber. In one embodiment, an apparatus generally includes a substrate supporting structure that is able to help minimize the temperature variation across each of the substrates during thermal processing. In one configuration, a substrate supporting structure is adapted to selectively support a substrate carrier to control the heat lost from regions of each of the substrates disposed on the substrate carrier. The substrate supporting structure is thus configured to provide a uniform temperature profile across each of the plurality of substrates during processing.
摘要:
A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
摘要:
A polishing system includes a polishing pad with an aperture that extends through all layers of the polishing pad and a light transmissive film positioned on top of a light-generating or light-guiding element of an optical monitoring system.
摘要:
A CMP method for polishing a phase change alloy on a substrate surface including positioning the substrate comprising a phase change alloy material on a platen containing a polishing pad and delivering a polishing slurry to the polishing pad. The polishing slurry includes colloidal particles with a particle size less than 60 nm, in an amount between 0.2% to about 10% by weight of slurry, a pH adjustor, a chelating agent, an oxidizing agent in an amount less than 1% by weight of slurry, and polyacrylic acid. The substrate on the platen is polished to remove a portion of the phase change alloy. A rinsing solution for rinsing the substrate on the platen includes deionized water and at least one component in the deionized water where the component selected from the group consisting of polyethylene imine, polyethylene glycol, polyacrylic amide, alcohol ethoxylates, polyacrylic acid, an azole containing compound, benzo-triazole, and combinations thereof.
摘要:
A method of processing a substrate having a conductive material layer disposed thereon is provided which includes positioning the substrate in a process apparatus and supplying a first polishing composition between to the substrate. The polishing composition comprises a first chelating agent, a second chelating agent, a first corrosion inhibitor, a second corrosion inhibitor, a suppressor, a solvent, and an inorganic acid based electrolyte to provide a pH between about 3 and about 10.
摘要:
Embodiments of the invention generally provide a method for electrochemically removing material from a substrate. In one embodiment, a method for electrochemically processing a substrate includes determining a process target for a substrate; electrochemically processing the substrate; determining a deviation between expected and actual process indicators while processing, and changing at least one process variable during processing in response to the variation.