Abstract:
A suspension member having an arm member and a ball joint section. The ball joint section having an opening receiving a press fit ball joint. The material of the ball joint section having a smaller material thickness than the material of the arm member. The ball joint section connected to the arm member.
Abstract:
A suspension component for a vehicle includes a cast iron body, a high strength steel tube and an adapter ring. The adapter ring includes a protrusion engaged with a face of the cast iron body. The protrusion is heated to a plasticized state as a capacitor is discharged through the protrusion and the face. The adapter ring is welded to the body upon cooling of the adapter ring. The high strength steel tube is fixed to the adapter ring.
Abstract:
A method of producing a chassis component. The method including the steps of coating an outside of a structural component, coating an outside of a joint cartridge which has been preassembled as a joint, and permanently and securely connecting the structural component to the joint cartridge using a material bonding or joining process.
Abstract:
An axle-to-beam or crossbrace-to-beam connection for a vehicle axle/suspension system includes an axle or crossbrace having at least one depression formed therein. A sleeve is formed with at least one depression and disposed about the axle or crossbrace so that the axle or crossbrace depression and the sleeve depression matingly engage one another to form a mated pair of depressions. A method of forming the axle-to-beam or crossbrace-to-beam connection includes providing an axle or crossbrace and disposing a sleeve about the axle or crossbrace. At least one mated pair of depressions is simultaneously formed in the axle or crossbrace and the sleeve. The sleeve is immovably mounted to a vehicle axle/suspension system.
Abstract:
An axle-to-beam or crossbrace-to-beam connection for a vehicle axle/suspension system includes an axle or crossbrace having at least one depression formed therein. A sleeve is formed with at least one depression and disposed about the axle or crossbrace so that the axle or crossbrace depression and the sleeve depression matingly engage one another to form a mated pair of depressions. A method of forming the axle-to-beam or crossbrace-to-beam connection includes providing an axle or crossbrace and disposing a sleeve about the axle or crossbrace. At least one mated pair of depressions is simultaneously formed in the axle or crossbrace and the sleeve. The sleeve is immovably mounted to a vehicle axle/suspension system.
Abstract:
A vehicle suspension assembly includes providing an axle assembly having a first end including a first mounting structure and a second end, providing a first bearing block and a second bearing block, forming a first aperture in the first bearing block and a second aperture in the second bearing block, attaching the first and second bearing blocks to the first mounting structure subsequent to forming the first and second apertures; and providing a first spindle assembly coupled to the first mounting structure by a first spherical bearing located within the first aperture and a second spherical bearing located within the second aperture, wherein a first kingpin assembly extends through the first and second spherical bearings, thereby coupling the first spindle with the first mounting structure.
Abstract:
An axle attachment includes a guide element having a guide-side attachment region that is curved in a concave manner and a guide-side fixing region adjoining the guide-side attachment region along the curvature line, and a clamping element having a clamping-side attachment region that is curved in a concave manner and that is arranged opposite the guide-side attachment region, and a clamping-side fixing region. A fixing element engages into a guide-side fixing region and into an opposing clamping-side fixing region and forces the regions against each other in order to fix an axle body to the axle attachment in a force-fitting manner.
Abstract:
A suspension assembly includes an axle member, a first trailing beam assembly and a second trailing beam assembly. The first trailing beam assembly and the second trailing beam assembly each include a first end operably coupled to a vehicle frame and a second end that includes a downwardly opening recess, wherein the recess includes an outer periphery, the axle member is positioned within the recess, and wherein a weld extends about the entire periphery of the recess, thereby securing the trailing beams to the axle member.
Abstract:
A method for producing a motor vehicle axle component includes the method steps of providing a metal strip made of a hardenable steel material, hot rolling the metal strip and subsequent cold rolling with more than 4% rolling reduction degree, annealing at 600 to 800° C., in particular at 650 to 750° C. for a time period between 10 and 20 hours, in particular 13 to 17 hours, cutting the heat treated metal strip to cut sheet metals, forming the metal cut into a motor vehicle axle component, austenizing and quenching the motor vehicle axle component, wherein the motor vehicle axle component has at least in a surface region a grain size characteristic value according to ASTM-E 112 of greater than 9.
Abstract:
A sleeve for assembling into a sub-assembly including a control arm of a vehicular suspension assembly prepared by a process is disclosed. The process includes the steps of: providing a tubular segment; firstly shaping a first portion of the tubular segment to include a proximal flange; secondly shaping a second portion of the tubular segment to include a distal flange. A third portion of the tubular segment forms an intermediate body extending between the proximal flange and the distal flange. The length of the tubular segment includes a substantially constant and uniform thickness after the firstly shaping step and the secondly step. A sleeve is also disclosed. A sub-assembly. A portion of a vehicular suspension assembly is also disclosed.