Abstract:
Representative methods for sealing MEMS devices include depositing insulating material over a substrate, forming conductive vias in a first set of layers of the insulating material, and forming metal structures in a second set of layers of the insulating material. The first and second sets of layers are interleaved in alternation. A dummy insulating layer is provided as an upper-most layer of the first set of layers. Portions of the first and second set of layers are etched to form void regions in the insulating material. A conductive pad is formed on and in a top surface of the insulating material. The void regions are sealed with an encapsulating structure. At least a portion of the encapsulating structure is laterally adjacent the dummy insulating layer, and above a top surface of the conductive pad. An etch is performed to remove at least a portion of the dummy insulating layer.
Abstract:
A method for manufacturing a micromechanical component including forming an access opening in an MEMS element or in a cap element of the component; connecting the MEMS element to the cap element, at least one cavity being formed between the MEMS element and the cap element; and closing off the access opening with respect to the at least one cavity under a defined atmosphere, using a laser.
Abstract:
A substrate structure for a micro electro mechanical system (MEMS) device, a semiconductor structure and a method for fabricating the same are provided. In various embodiments, the substrate structure for the MEMS device includes a substrate, the MEMS device, and an anti-stiction layer. The MEMS device is over the substrate. The anti-stiction layer is on a surface of the MEMS device, and includes amorphous carbon, polytetrafluoroethene, hafnium oxide, tantalum oxide, zirconium oxide, or a combination thereof.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
A method of manufacturing microstructures, such as MEMS or NEMS devices, including forming a protective layer on a surface of a moveable component of the microstructure. For example, a silicide layer may be formed on a portion of at least four different surfaces of a poly-silicon mass that is moveable with respect to a substrate of the microstructure. The process may be self-aligning.
Abstract:
A method for forming an anti-stiction coating on a surface of a semiconductor device is provided. Using atomic layer deposition (ALD) processes to activate surface prior to anti-stiction coating deposition, anti-stiction coating having strong chemical bonding to the surface is obtained.
Abstract:
One or more stopper features (e.g., bump structures) are formed in a standard ASIC wafer top passivation layer for preventing MEMS device stiction vertically in integrated devices having a MEMS device capped directly by an ASIC wafer. A TiN coating may be used on the stopper feature(s) for anti-stiction. An electrical potential may be applied to the TiN anti-stiction coating of one or more stopper features.
Abstract:
Thermally or photochemically activated small molecule delivery polymers and platforms enable ‘on-demand’ delivery of a vapor-phase lubricant, such as pentanol or other alcohols, that enable scheduled or as-needed lubrication of MEMS devices, thereby greatly improving the reliability and lifespan of the devices.
Abstract:
A method for fabricating a MEMS device includes depositing and patterning a first sacrificial layer onto a silicon substrate, the first sacrificial layer being partially removed leaving a first remaining oxide. Further, the method includes depositing a conductive structure layer onto the silicon substrate, the conductive structure layer making physical contact with at least a portion of the silicon substrate. Further, a second sacrificial layer is formed on top of the conductive structure layer. Patterning and etching of the silicon substrate is performed stopping at the second sacrificial layer. Additionally, the MEMS substrate is bonded to a CMOS wafer, the CMOS wafer having formed thereupon a metal layer. An electrical connection is formed between the MEMS substrate and the metal layer.
Abstract:
A device has a microelectromechanical system (MEMS) component with at least one surface and a coating disposed on at least a portion of the surface. The coating has a compound of the formula M(CnF2n+1Or), wherein M is a polar head group and wherein n≧2r. The value of n may range from 2 to about 20, and the value of r may range from 1 to about 10. The value of n plus r may range from 3 to about 30, and a ratio of n:r may have a value of about 2:1 to about 20:1.