Abstract:
An additive gel for fuels that reduces the soot content in lubricating oil and/or emission in an engine. Further a process employing an additive gel for fuel in a fuel system to decrease the amount of soot in the lubricating oil of an engine and/or decrease the emissions from an engine.
Abstract:
A combustion modifier for an aqueous hydrocarbon fuel emulsion that reduces nitrogen oxides (NOx), hydrocarbons, carbon monoxide (CO) and particulate matter from the emissions of internal combustion engines. A class of combustion modifiers used in this invention contain nitrogen. The nitrogen-containing combustion modifiers are nitro compounds, hydroxylamines or salts thereof, nitrogen compounds having at least one strained ring group containing from 3 to 5 ring atoms, nitrites, nitramines and mixtures thereof. The non nitrogen-containing combustion modifier comprises compounds containing at least one strained ring compound.
Abstract:
The invention relates to a process for the preparation of terpolymers of ethylene and at least 2 further olefinically unsaturated compounds by polymerization in a tubular reactor fitted with at least one side branch, wherein the fresh monomer components, which are introduced into the tubular reactor via the reactor inlet (the primary stream) or via the side branch or side branches (secondary stream or secondary streams), in each of the streams contain ethylene and at most one further olefinically unsaturated compound.
Abstract:
The present invention provides a continuous process for preparing additive mixtures for mineral oils and mineral oil distillates, comprising A) a cold flow improver for middle distillates, and at least one further component selected from B) and C): B) a further cold flow improver, C) an organic solvent, which comprises mixing cold flow improver and optionally solvent by means of a static mixer, the temperature of the additive mixture at the outlet of the static mixer being from 0null C. to 100null C.
Abstract:
Compositions comprising (a) an ethylene-mixed unsaturated ester copolymer or (b) two or more ethylene-unsaturated ester copolymers differing, for example, in their ester chains improve the low temperature properties of fuel oils.
Abstract:
A drag-reducing polymer capable of dissolving even in cold fluids is described, along with a method for manufacturing said drag-reducing polymer. The drag-reducing polymer has at least one alpha-olefin monomer with between a four and nine carbon chain length and a co-monomer and has less than 25% monomers (molar content) with carbon chain lengths of 12 or longer. A drag-reducing polymer suspension is also described.
Abstract:
The invention relates to additives for improving the cold flow properties of middle distillates, containing from 10 to 95% by weight of copolymers A), from 5 to 90% by weight of copolymers B) and, if required, from 0 to 70% by weight of copolymers C), which correspond to the following formulae: A) copolymers of lower olefins and vinyl esters, B) copolymers comprising B1) from 40 to 60 mol % of bivalent structural units of the formula where X is O or N—R4 and in which a and b are 0 or 1 and a +b=1, and B2) from 60 to 40 mol % of bivalent structural units of the formula —H2C—CR11R5— B2 and, if required, B3) from 0 to 20 mol % of bivalent structural units which are derived from polyolefins, the polyolefins being derivable from monoolefins having 3 to 5 carbon atoms, and in which a) R4 is an alkyl or alkenyl radical having 10 to 40 carbon atoms or an alkoxyalkyl radical having 1 to 100 alkoxy units and 1 to 30 carbon atoms in the alkyl radical, and b) R5 is a radical of the formula OCOR12 or COOR12, in which R12 is C1-to C3-alkyl, and c) the number of carbon atoms of the polyolefin molecules on which the structural units B3) are based is from 35 to 350, and d) R11 is hydrogen or methyl, and, if required, C) a further copolymer differing from A) and B) and comprising ethylene and one or more vinyl esters or acrylates, which by itself is effective as a cold flow improver for middle distillates.
Abstract:
A method of enhancing the efficacy of a polymeric wax inhibitor for an oil which comprises applying said inhibitor in an aliphatic glycol ether solvent.
Abstract:
Ethylene copolymers with octene and/or ethylene terpolymers with alpha-olefins from 3 to 12 carbon atoms, optionally in the presence of other comonomers containing more than one unsaturation, usable as additives to increase the gas oil properties at low temperatures, obtainable by polymerization of the monomers in the presence of catalysts comprising: a bis-cyclopentadienyl derivative having the general formula: (Cp1Cp2)—M—(L2L3) containing groups with oxygen bound to the transition metal, wherein M is a metal from the IIIb group to the Vb group or of the lanthanide series of the Element Periodic Table; Cp1 and Cp2, equal to or different from each other, represent cyclopentadienyls bound to M with delocalized &pgr; bonds.
Abstract:
The invention provides dispersants and dispersant viscosity index improvers which include polymers of conjugated dienes which have been hydrogenated, functionalized, optionally modified, and post treated. The dispersant substances include a copolymer of two different conjugated dienes. The polymers are selectively hydrogenated to produce polymers which have highly controlled amounts of unsaturation, permitting highly selective functionalization. Also provided are lubricant fluids, such as mineral and synthetic oils, which have been modified in their dispersancy and/or viscometric properties by means of the dispersant substances of the invention. Also provided are methods of modifying the dispersancy and/or viscometric properties of lubricating fluids such as mineral and synthetic lubricating oils. The dispersant substances may also include a carrier fluid to provide dispersant concentrates.