Abstract:
A non-oriented electrical steel sheet includes: a base iron (1); and a tension applying type insulating film (2) of not less than 1 g/m2 nor more than 6 g/m2 on a surface of the base iron (1). An oxide layer (3) containing at least one type of oxide selected from the group consisting of Si, Al, and Cr and having a thickness of not less than 0.01 μm nor more than 0.5 μm is formed on the surface of the base iron (1).
Abstract translation:无取向电工钢板包括:基底铁(1); 以及在基础铁(1)的表面上不小于1g / m 2且不大于6g / m 2的张力施加型绝缘膜(2)。 在基底铁的表面上形成含有选自Si,Al和Cr中的至少一种氧化物层(3),厚度不小于0.01μm,不大于0.5μm的氧化物层 1)。
Abstract:
There is provided a Cr-containing austenitic alloy having a chromium oxide film with a thickness of 5 nm or larger on the surface, wherein the content of Mn in a base metal is, by mass percent, less than 0.1%. The chemical composition of the base metal desirably consists of, by mass percent, C: 0.15% or less, Si: 1.00% or less, Mn: less than 0.1%, P: 0.030% or less, S: 0.030% or less, Cr: 10.0 to 40.0%, Ni: 8.0 to 80.0%, Ti: 0.5% or less, Cu: 0.6% or less, Al: 0.5% or less, and N: 0.20% or less, the balance being Fe and impurities.
Abstract:
Provided is a process for preparing an electrode comprising an iron active material. The process comprises first fabricating an electrode comprising an iron active material, and then treating the electrode with a gaseous oxidant to thereby create an oxidized surface. The resulting iron electrode is preconditioned prior to any charge-discharge cycle to have the assessable surface of the iron active material in the same oxidation state as in discharged iron negative electrodes active material.
Abstract:
To provide a cast product having an alumina barrier layer and method for producing the same. A cast product having an alumina barrier layer of the present invention is a cast product in which an alumina barrier layer containing Al2O3 is formed on the surface of a cast body, and the cast body contains C: 0.3 mass % to 0.7 mass %, Si: 0.1 mass % to 1.5 mass %, Mn: 0.1 mass % to 3 mass %, Cr: 15 mass % to 40 mass %, Ni: 20 mass % to 55 mass %, Al: 2 mass % to 4 mass %, rare earth element: 0.005 mass % to 0.4 mass %, W: 0.5 mass % to 5 mass % and/or Mo: 0.1 mass % to 3 mass %, and 25 mass % or more of Fe in the remainder and an inevitable impurity, and 80 mass % or more of the rare earth element is La.
Abstract translation:提供具有氧化铝阻隔层的铸造产品及其制造方法。 具有本发明的氧化铝阻隔层的铸造产品是在铸体表面上形成含有Al 2 O 3的氧化铝阻挡层的铸造产品,并且铸造体含有C:0.3质量%〜0.7质量%,Si :0.1质量%〜1.5质量%,Mn:0.1质量%〜3质量%,Cr:15质量%〜40质量%,Ni:20质量%〜55质量%,Al:2质量%〜4质量% 土壤元素:0.005质量%〜0.4质量%,W:0.5质量%〜5质量%,和/或Mo:0.1质量%〜3质量%,剩余部分中的Fe为25质量%以上,不可避免的杂质, 稀土元素的80质量%以上为La。
Abstract:
A method for making a ferritic stainless steel article having an oxidation resistant surface includes providing a ferritic stainless steel comprising aluminum, at least one rare earth metal and 16 to less than 30 weight percent chromium, wherein the total weight of rare earth metals is greater than 0.02 weight percent. At least one surface of the ferritic stainless steel is modified so that, when subjected to an oxidizing atmosphere at high temperature, the modified surface develops an electrically conductive, aluminum-rich, oxidation resistant oxide scale comprising chromium and iron and a having a hematite structure differing from Fe2O3, alpha Cr2O3 and alpha Al2O3. The modified surface may be provided, for example, by electrochemically modifying the surface, such as by electropolishing the surface.
Abstract:
A piezoelectric element includes a metal substrate, an alumina layer, a lower electrode, a piezoelectric layer, and an upper electrode. The metal substrate includes iron as a main component and includes at least aluminum and chromium. The alumina layer is formed on the metal substrate, and the lower electrode is formed on the alumina layer. The piezoelectric layer is formed on the lower electrode, and the upper electrode is formed on the piezoelectric layer. The alumina layer is mainly formed of particles in a γ-alumina phase.
Abstract:
An object is to provide a steam turbine member having excellent oxidation resistance at low cost without using an alloy coating such as a thermally sprayed or sintered body. The steam turbine member includes a substrate made of stainless steel containing Fe as a main component, 8 to 15 wt % of Cr, and 0.1 to 1.0 wt % of Mn. The steam turbine member has, on a surface of the substrate, an oxide film made of an oxide of a constituent element of the substrate. It is preferable that the oxide film thickness is 1 μm or less. It is also preferable that the oxide film has a surface roughness Ra of 1.6 a or less.
Abstract:
In a known method for producing an oxide layer on metal parts, the metal parts are heat-treated in a treatment chamber during a carburization phase at temperatures below 1100° C. [2012° F.] in an atmosphere containing carbon monoxide and hydrogen and then, during an oxidation phase, they are oxidized at an oxidation temperature in the range from 750° C. to 950° C. [1382° F. to 1742° F.] in an atmosphere where a PH2O-to-PH2 ratio between 0.3 and 10 has been established by feeding an oxidant into the treatment chamber, a process in which an oxide layer is formed, whereby the oxygen partial pressure is determined by means of an oxygen probe and regulated at least during the oxidation phase. In order to improve the known method in terms of the reproducibility of the formation of corrosion-resistant coatings that cover and adhere well on metal parts containing iron and so as to improve the cost effectiveness of the process, it is proposed according to the invention that the oxygen partial pressure be regulated in such a way that the oxygen probe indicates a probe voltage in the range from 890 mV to 940 mV.
Abstract:
The present invention provides a process to treat steels, preferably carbon steel to reduce the tendency of the steel to form coke when in contact with hydrocarbons at elevated temperatures. The steel may be first reduced then treated with a mixture of compounds which further modify the reduced surface and finally the treated steel surface is cured. The treated steel has a reduced propensity to form coke when in contact with hydrocarbons particularly at higher temperatures.
Abstract:
A fuel tank for a motor vehicle is fabricated from an austenitic stainless steel sheet having elongation of 50% or more after fracture by a uniaxial stretching test with a work-hardening coefficient of 4000 N/mm2 or a ferritic stainless steel sheet having elongation of 30% or more after fracture with Lankford value of 1.3 or more. The stainless steel sheets are reformed to a complicated shape of a fuel tank without work flaws such as cracks or break-down. Excellent corrosion-resistance of stainless steel itself is maintained in the fabricated fuel tank. Consequently, the proposed fuel tank is used without diffusion of gasoline to the open air over a long term.
Abstract translation:一种用于机动车辆的燃料箱由奥氏体不锈钢板制成,其奥氏体不锈钢板通过加工硬化系数为4000N / mm 2的单轴拉伸试验或断裂后的伸长率为50%以上,或者 铁素体不锈钢板在断裂后的伸长率为30%以上,兰克福德值为1.3以上。 不锈钢板被重新形成为燃料箱的复杂形状,没有诸如裂缝或破裂的工作缺陷。 在制造的燃料箱中保持不锈钢本身的优异的耐腐蚀性。 因此,所提出的燃料箱在长时间不使用汽油扩散到露天的情况下使用。