Abstract:
A time to digital converter includes a sample module operable to sample an input signal at multiple different instances of time. A transition detection module, formed of comparison elements, processes the sampled input signal at successive time instances so as to detect transitions in the input signal in terms of time. An output module generates detected transitions in the input signal on multiple parallel outputs.
Abstract:
A TD converter is provided for digitally converting a delay time value into a digital value. In the TD converter, an oscillator circuit part inputs time domain data. A first-state counter circuit part measures a number of waves of an output oscillation waveform from the oscillator circuit part when time domain data is in a first state, and a second-state counter circuit part measures a number of waves of the output oscillation waveform from the oscillator circuit part when the time domain data is in a second state. An output signal generator part generates an output signal based on output count values of the first-state counter circuit part and the second-state counter circuit part, and a frequency control circuit controls the oscillator circuit part to always oscillate and to control an oscillation frequency of the oscillator circuit part.
Abstract:
An edge detector includes flip-flops receiving phase signals of a ring oscillator, a resetter canceling the reset states of the flip-flops at the edge timing of an input signal, and a logical operator performing a logical operation on output signals of the flip-flops. A phase state detector detects a phase state of the ring oscillator occurring at the edge timing of the input signal based on the output signals of the flip-flops. A time-to-digital converter converts an edge interval between the input signal and an output signal of the logical operator into a digital value. A latch latches a value of a counter counting the number of cycles of an output signal of the ring oscillator, at the edge timing of the input signal. An operator calculates a digital value of a received signal from output signals of the latch, the phase state detector, and the time-to-digital converter.
Abstract:
An apparatus for inserting delay according to an embodiment includes a signal generating circuit, a plurality of carry elements, and a delay chain circuit. The delay chain circuit includes one or more delay modules selected from the plurality of carry elements, at least one feedback line connected between at least one of the delay modules and the signal generating circuit, and a plurality of enable inputs. Each of the plurality of enable inputs is provided in a respective one of the delay modules. The delay chain circuit is configured to generate an amount of delay based on a delay selection signal that is received at the enable inputs and that selects the amount of delay, and is configured to provide the selected amount of delay to the signal generating circuit, which is configured to incorporate the delay into the start signal.
Abstract:
A method and a system for compensating a delay mismatch between a first measurement channel and a second measurement channel is disclosed. A method for compensating a delay mismatch between a first measurement channel and a second measurement channel includes providing a reference point for starting the first and second measurement channel, and starting the first measurement channel after expiration of a first delay period which begins at the reference point. The method further includes starting the second measurement channel after expiry of a second delay period which begins at the reference point, wherein a difference between a length of the first delay period and a length of the second delay period is substantially equal to the delay mismatch between the first measurement channel and the second measurement channel.
Abstract:
In a time-to-digital conversion stage, a time-to-digital conversion circuit outputs an n-bit digital signal, which represents an integer value ranging from −(2n-1−1) to +(2n-1−1), based on a phase difference between a first and a second signals input thereto; a time difference amplifier circuit amplifies the phase difference between the first and the second signals 2n-1 times, and outputs two signals having an amplified phase difference therebetween; a delay adjustment circuit adds a phase difference dependent on the digital signal to the two signals output from the time difference amplifier circuit, and outputs another two signals; an output detection circuit detects that the delay adjustment circuit has output the another two signals, and outputs a detection signal; and a storage circuit latches the digital signal in synchronism with the detection signal. Multi-stage coupling of the time-to-digital conversion stages forms a pipeline time-to-digital converter.
Abstract:
Method and apparatus for accumulation of electric charge delivered to the charge input (InQ) in the sampling capacitor (Cn) and in realization of the process of charge redistribution in the array of redistribution (A) by changing states of signals from relevant control outputs and in assignment of relevant values to bits in the digital word by means of the control module (CM). Method is characterized in that after detection of the beginning of the next gate signal (Gx+1), the charge is accumulated in the additional sampling capacitor (CnA), and then the process of charge redistribution is realized and relevant values are assigned to bits of the digital word. When the beginning of the subsequent gate signal (Gx+2) is detected, the next cycle begins and electric charge is accumulated in the sampling capacitor (Cn) again.
Abstract:
A window-enabled TDC and method of detecting phase of a reference signal. One embodiment of the window-enabled TDC includes: (1) a window generator configured to receive a reference signal and a clock signal, and (2) a TDC circuit coupled to the window generator and configured to be enabled based on the reference signal and disabled based on the clock signal.
Abstract:
A radiation detector module (10) for use in a time-of-flight positron emission tomography (TOF-PET) scanner (8) generates a trigger signal indicative of a detected radiation event. A timing circuit (22) including a first time-to-digital converter (TDC) (30) and a second TDC (31) is configured to output a corrected timestamp for the detected radiation event based on a first timestamp determined by the first TDC (30) and a second timestamp determined by the second TDC (31). The first TDC is synchronized to a first reference clock signal (40, 53) and the second TDC is synchronized to a second reference clock signal (42, 54), the first and second reference clock signals being asynchronous.
Abstract:
An all-digital delay measurement circuit (DMC) constructed on an integrated circuit (IC) die characterizes clocking circuits such as full phase rotation interpolators, also constructed on the IC die. The on-die all-digital DMC produces a digital output value proportional to the relative delay between two clocks, normalized to the clock period of the two clocks.