Modification of selectivity for sensing for nanostructure sensing device arrays
    91.
    发明授权
    Modification of selectivity for sensing for nanostructure sensing device arrays 有权
    用于纳米结构感测器件阵列的感测选择性的修改

    公开(公告)号:US08900517B2

    公开(公告)日:2014-12-02

    申请号:US11938180

    申请日:2007-11-09

    Abstract: An electronic system for selectively detecting and identifying a plurality of chemical species, which comprises an array of nanostructure sensing devices, is disclosed. Within the array, there are at least two different selectivities for sensing among the nanostructure sensing devices. Methods for fabricating the electronic system are also disclosed. The methods involve modifying nanostructures within the devices to have different selectivity for sensing chemical species. Modification can involve chemical, electrochemical, and self-limiting point defect reactions. Reactants for these reactions can be supplied using a bath method or a chemical jet method. Methods for using the arrays of nanostructure sensing devices to detect and identify a plurality of chemical species are also provided. The methods involve comparing signals from nanostructure sensing devices that have not been exposed to the chemical species of interest with signals from nanostructure sensing devices that have been exposed to the chemical species of interest.

    Abstract translation: 公开了一种用于选择性地检测和识别包括纳米结构感测装置阵列的多种化学物质的电子系统。 在阵列内,在纳米结构感测装置中有至少两种用于感测的不同选择性。 还公开了用于制造电子系统的方法。 这些方法包括修改装置内的纳米结构以具有感测化学物质的不同选择性。 修饰可能涉及化学,电化学和自限制点缺陷反应。 这些反应的反应物可以使用浴法或化学喷射法提供。 还提供了使用纳米结构感测装置的阵列来检测和识别多种化学物种的方法。 该方法涉及将未暴露于感兴趣的化学物质的纳米结构感测装置的信号与已经暴露于感兴趣的化学物质的纳米结构感测装置的信号进行比较。

    Method of modulation and demodulation for nano communication, and receiver using the method
    93.
    发明授权
    Method of modulation and demodulation for nano communication, and receiver using the method 有权
    用于纳米通信的调制和解调方法,以及使用该方法的接收机

    公开(公告)号:US08862082B2

    公开(公告)日:2014-10-14

    申请号:US13775815

    申请日:2013-02-25

    CPC classification number: H04B1/16 H03D3/30 H03D3/34 Y10S977/953

    Abstract: A receiver for nano communication includes a power source including a cathode and an anode; a cathode unit connected to the cathode of the power source, the cathode unit including a nano device configured to receive a wireless signal modulated according to a predetermined modulation scheme, have at least two different resonant frequencies, and resonate based on a frequency of the wireless signal and the at least two different resonant frequencies; and an anode unit connected to the anode of the power source, the anode unit being configured to detect electrons emitted from the nano device, and demodulate a the wireless signal based on a pattern of the detected electrons.

    Abstract translation: 一种用于纳米通信的接收器包括:包括阴极和阳极的电源; 连接到电源的阴极的阴极单元,包括被配置为接收根据预定调制方案调制的无线信号的纳米装置的阴极单元具有至少两个不同的谐振频率,并且基于无线的频率而谐振 信号和至少两个不同的谐振频率; 以及连接到所述电源的阳极的阳极单元,所述阳极单元被配置为检测从所述纳米器件发射的电子,并且基于所检测的电子的图案来解调所述无线信号。

    SYSTEM FOR GENERATING ELECTRICAL ENERGY THROUGH THE INPUT OF ENERGY TO ALIGNMENT BUCKYPAPER
    95.
    发明申请
    SYSTEM FOR GENERATING ELECTRICAL ENERGY THROUGH THE INPUT OF ENERGY TO ALIGNMENT BUCKYPAPER 审中-公开
    通过输入能量来对齐输入电力的电能系统

    公开(公告)号:US20130214638A1

    公开(公告)日:2013-08-22

    申请号:US13401598

    申请日:2012-02-21

    Applicant: Hsin Yuan MIAO

    Inventor: Hsin Yuan MIAO

    Abstract: The electrical energy generating system of the present invention comprises a piece of alignment Buckypaper, an energy generator, a thin deposition and two contacts. The alignment Buckypaper is a thin sheet made from an aggregate of carbon nanotubes. The thin deposition is formed on at least one surface of the alignment Buckypaper by electrolysis to form a semimetal material. A contact is connected with the upper surface of the alignment Buckypaper and the other contact is connected with the lower surface of the alignment Buckypaper. In use, the energy generated by the generator is inputted to the alignment Buckypaper. The energy then ionizes the molecules contained in the alignment Buckypaper. The positive charges move to the upper contact and the negative charges move to the lower contact. Such electrical energy may then be fed to a load connected with the two contacts to do work on the load.

    Abstract translation: 本发明的电能产生系统包括一个对准的消音器,能量发生器,薄的沉积物和两个触点。 对准贴纸是由碳纳米管集合体制成的薄片。 通过电解在定位消色差器的至少一个表面上形成薄沉积物以形成半金属材料。 接触件与对准的消音器的上表面连接,另一个接触件与对准消音器的下表面连接。 在使用中,由发生器产生的能量被输入到对准的消音器。 然后,能量将包含在对准Buckypaper中的分子电离。 正电荷移动到上触点,负电荷移动到下触点。 然后,这样的电能可以被馈送到与两个触点相连的负载,以在负载上工作。

    NANOELECTRONIC DIFFERENTIAL AMPLIFIERS AND RELATED CIRCUITS IMPLEMENTED ON A SEGMENT OF A GRAPHENE NANORIBBON
    98.
    发明申请
    NANOELECTRONIC DIFFERENTIAL AMPLIFIERS AND RELATED CIRCUITS IMPLEMENTED ON A SEGMENT OF A GRAPHENE NANORIBBON 有权
    纳米碳纳米管分段实现的纳米电子差分放大器及相关电路

    公开(公告)号:US20120001689A1

    公开(公告)日:2012-01-05

    申请号:US13217240

    申请日:2011-08-25

    Inventor: Lester F. LUDWIG

    Abstract: A multiple transistor differential amplifier is implemented on a segment of a single graphene nanoribbon. Differential amplifier field effect transistors are formed on the graphene nanoribbon from a first group of electrical conductors in contact with the graphene nanoribbon and a second group of electrical conductors insulated from, but exerting electric fields on, the graphene nanoribbon thereby forming the gates of the field effect transistors. A transistor in one portion of the graphene nanoribbon and a transistor in another portion of the graphene nanoribbon are responsive to respective incoming electrical signals. A current source, also formed on the graphene nanoribbon, is connected with the differential amplifier, and the current source and the differential amplifier operating together generate an outgoing signal responsive to the incoming electrical signal. In an example application, the resulting circuit can be used to interface with electrical signals of nanoscale sensors and actuators,

    Abstract translation: 在单个石墨烯纳米棒的一段上实现多晶体管差分放大器。 差分放大器场效应晶体管形成在与石墨烯纳米薄片接触的第一组电导体的石墨烯纳米棒上,和在石墨烯纳米纤维上绝缘而不是施加电场的第二组电导体,从而形成场效应的栅极 晶体管。 石墨烯纳米纤维的一部分中的晶体管和石墨烯纳米纤维的另一部分中的晶体管对相应的输入电信号是响应的。 也形成在石墨烯纳米薄片上的电流源与差分放大器连接,并且电流源和差分放大器一起工作,响应输入的电信号产生输出信号。 在示例应用中,所得到的电路可用于与纳米级传感器和致动器的电信号进行接口,

    Nanoelectronic differential amplifiers and related circuits having graphene nanoribbons
    99.
    发明授权
    Nanoelectronic differential amplifiers and related circuits having graphene nanoribbons 有权
    纳米电子差动放大器和具有石墨烯纳米带的相关电路

    公开(公告)号:US08013286B2

    公开(公告)日:2011-09-06

    申请号:US12948107

    申请日:2010-11-17

    Inventor: Lester F. Ludwig

    Abstract: A multiple transistor differential amplifier is implemented on a single graphene nanoribbon. Differential amplifier field effect transistors are formed on the graphene nanoribbon from a first group of electrical conductors in contact with the graphene nanoribbon and a second group of electrical conductors insulated from, but exerting electric fields on, the graphene nanoribbon thereby forming the gates of the field effect transistors. A transistor in one portion of the differential amplifier and a transistor in another portion of the differential amplifier are responsive to an incoming electrical signal. A current source, also formed on the graphene nanoribbon, is connected with the differential amplifier, and the current source and the differential amplifier operating together generate an outgoing signal responsive to the incoming electrical signal.

    Abstract translation: 在单个石墨烯纳米棒上实现多晶体管差分放大器。 差分放大器场效应晶体管形成在与石墨烯纳米薄片接触的第一组电导体的石墨烯纳米棒上,和在石墨烯纳米纤维上绝缘而不是施加电场的第二组电导体,从而形成场效应的栅极 晶体管。 差分放大器的一部分中的晶体管和差分放大器的另一部分中的晶体管对输入的电信号进行响应。 也形成在石墨烯纳米薄片上的电流源与差分放大器连接,并且电流源和差分放大器一起工作,响应输入的电信号产生输出信号。

    Nanopore Electrode, Nanopore Membrane, Methods of Preparation and Surface Modification, and Use Thereof
    100.
    发明申请
    Nanopore Electrode, Nanopore Membrane, Methods of Preparation and Surface Modification, and Use Thereof 有权
    纳米孔电极,纳米孔膜,制备方法和表面改性及其用途

    公开(公告)号:US20110168551A1

    公开(公告)日:2011-07-14

    申请号:US12949469

    申请日:2010-11-18

    Abstract: Provided are fabrication, characterization and application of a nanodisk electrode, a nanopore electrode and a nanopore membrane. These three nanostructures share common fabrication steps. In one embodiment, the fabrication of a disk electrode involves sealing a sharpened internal signal transduction element (“ISTE”) into a substrate, followed by polishing of the substrate until a nanometer-sized disk of the ISTE is exposed. The fabrication of a nanopore electrode is accomplished by etching the nanodisk electrode to create a pore in the substrate, with the remaining ISTE comprising the pore base. Complete removal of the ISTE yields a nanopore membrane, in which a conical shaped pore is embedded in a thin membrane of the substrate.

    Abstract translation: 提供了纳米棒电极,纳米孔电极和纳米孔膜的制造,表征和应用。 这三种纳米结构具有共同的制造步骤。 在一个实施例中,盘形电极的制造包括将锐化的内部信号转导元件(“ISTE”)密封到衬底中,随后抛光衬底直至暴露出ISTE的纳米尺寸的盘。 纳米孔电极的制造通过蚀刻纳米盘电极以在衬底中产生孔而实现,剩余的ISTE包含孔基。 完全去除ISTE产生纳米孔膜,其中锥形孔被嵌入在基底的薄膜中。

Patent Agency Ranking