Abstract:
A method for controlling a hybrid electric powertrain includes, in response to a request to increase a powertrain braking force on at least one of a plurality of traction wheels, (i) commanding at least one clutch to increase a gear ratio of a transmission, and (ii) during clutch stroke, commanding an electric machine to act as a generator such that the electric machine applies a braking force to at least one of the traction wheels.
Abstract:
By increasing accelerator opening APO from time t1, kick-down shift is started at time t2. While the kick-down shift is carried out by changeover from a release element to an engagement element, a motor torque tTm that is increased as Tmo with an increase in accelerator opening APO is restricted as follows. In a shift initial stage from time t2 to inertia phase start time t3, motor torque tTm is restricted to not exceed upper limit value Tlimit obtained by subtracting an inertia phase progressing torque increment Tip from an inertia phase end outputtable maximum motor torque Tmo2 that is outputtable with motor rotation speed Nmo2 at inertia phase end time t4. During an inertia phase (t3-t4), the motor torque tTm is restricted to a value Tlimit+Tip.
Abstract:
A power transmission device includes a synchronous meshing mechanism, a braking mechanism, a shift mechanism, a parking gear, a parking mechanism, and a control unit. In the case where the shift mechanism is switched to a parking range, the control unit performs braking continuation processing for continuing the braking of the braking mechanism (step 4) regardless of a driver's braking operation, inhibits the rotation of the driven gear shaft by the parking mechanism, places a predetermined synchronous meshing mechanism in a connected state as a preparation for starting up the vehicle again, and then ends the braking continuation processing (step 5).
Abstract:
A system to control a powertrain includes an energy management layer monitoring a plurality of potential energy storage devices and determining a reference available power for each of the potential energy storage devices. The system further includes a power management layer monitoring the reference available power for the potential energy storage devices, a power demanded of the powertrain, and an electric power constraint for the potential energy storage devices, and determining a power split based upon the monitored reference available power for the potential energy storage devices, the power demanded of the powertrain, and the electric power constraint for the potential energy storage devices. The system further includes a torque control layer controlling torque generation based upon the determined power split.
Abstract:
A running control system for vehicles is provided to reduce uncomfortable feeling during coasting by adjusting a braking force. The running control system is applied to a vehicle having a braking device adapted to generate a braking force according to an operation of a driver irrespective of an engagement state of the engagement elements disposed between a prime mover and drive wheels. The running control system comprises a controller that applies a braking force of the prime mover to the drive wheels by bringing the engagement elements into engagement to enable torque transmission between the prime mover and the drive wheels, when the braking force of the braking device is eliminated by aborting an operation of the braking device during coasting while disengaging the engagement elements to interrupt torque transmission between the prime mover and the drive wheels.
Abstract:
A method for braking a vehicle driving forward, in which the vehicle has a propulsion system including a combustion engine with an output shaft (2a), a gearbox (3) with an input shaft (3a), an electric machine (9) comprising a stator and a rotor, and a planetary gear comprising three components in the form of a sun gear (10), a ring gear (11) and a planet wheel carrier (12). The vehicle is driven with one of the components connected to an output shaft of the combustion engine rotating with a lower rotational speed than one of the components connected to the electric machine. When the vehicle is braked, the electric machine is controlled to apply a brake torque to the input shaft of the gearbox, making the rotational speed of the combustion engine increase.
Abstract:
The control device of a vehicle drive device is configured to have an electric path and a mechanical path, to control an operating point of the engine by adjusting a torque of the first electric motor, to select a transmission path with better power transmission efficiency between a power transmission efficiency in a first transmission path transmitting the power of the engine toward the drive wheels by using both the power transmission via the electric path and the power transmission only via fluid in the hydraulic power transmission device in the mechanical path and a power transmission efficiency in a second transmission path transmitting the power of the engine toward the drive wheels through power transmission when the lockup clutch of the hydraulic power transmission device is driven to perform an engagement or slip operation in the mechanical path.
Abstract:
A transmission for a hybrid vehicle is provided to implement one or more electric vehicle modes, two or more power split modes, and a plurality of fixed-gear ratio modes that can improve driving performance and fuel efficiency.
Abstract:
It is provided a control device of a vehicle drive device having an electric motor connected via an inverter to an electric-motor power source, an inverter smoothing capacitor connected to the inverter of the electric-motor power source side thereof, and a transmission making up a portion of a power transmission path between the electric motor and drive wheels, the control device being configured to make an output torque of the electric motor smaller as the rotation speed of the electric motor being higher, and to make a gradient of an output torque reduced amount of the electric motor larger as the rotation speed of the electric motor being higher if a rotation speed of the electric motor rises at the time of upshift of the transmission higher than a rotation speed before the shift.
Abstract:
A vehicle drive device has an outer rotor type electric motor with a rotor disposed on an outer circumferential side of a stator, comprising: a first power transmission path coupling an inside of the rotor and drive wheels; and a second power transmission path coupling an outside of the rotor and the drive wheels, the first power transmission path and the second power transmission path having different gear ratios, one power transmission path of the first power transmission path and the second power transmission path being coupled to the drive wheels to make a gear change.