Abstract:
A Sampled Pipeline Subranging Converter (SPSC) may include at least one stage—e.g. at least the input stage—operating in a time-continuous fashion. In the time continuous input stage, the analog input may be processed in two parallel paths. A lower path may comprise a track-and-hold (T/H) element, an Analog-to-Digital-Converter (ADC) and a Digital-to-Analog-Converter (DAC). The T/H element may be optional and may be present if required by the ADC. The signal entering the lower path may be sampled at the desired conversion rate. The time continuous stage(s) may additionally be configured with an upper path that includes a delay element configured to receive the analog input, a Low-Pass (LP) filter coupled to the delay element, and an anti alias filter. The output generated by the DAC may be subtracted from the output of the LP filter, and the resulting difference signal may be provided to the anti alias filter, which in turn may generate the residue (or error) output. The digital output of the time continuous converter may be calculated by combining the digital outputs of the various sections.
Abstract:
Polarity independent precision measurement of an input voltage signal is accomplished using a voltage integrating circuit that receives a first positive reference voltage and the input voltage signal, wherein the first positive reference voltage is greater in magnitude than the input voltage signal. A resetting circuit is coupled to the voltage integrating circuit for stabilizing its output. A pair of comparators, each connected to the output of the voltage integrating circuit, make voltage comparisons against a second reference voltage and a third reference voltage respectively, wherein the second and third reference voltages are greater in magnitude than the first reference voltage. A time interval measurement circuit receives the outputs of the pair of comparators, and operates to measure the time taken for the output of the voltage integrating circuit to transit to the second reference voltage level and the third reference voltage level. The time interval measurement circuit provides an output for controlling the resetting circuit.
Abstract:
A circuit for converting an analog signal to a discrete pulse-width-modulated (PWM) signal uses a delta-sigma amplifier and a discrete PWM stage to produce a discrete PWM output signal having lower in-band signal noise then a PDM system and a lower signal distortion then a continuous PWM system. A multiple bit quantization stage drives the discrete PWM stage.
Abstract:
An output pulse of a flip flop is delayed in a delay inverter circuit before supplied to an input terminal of a level shifter. Then, an output pulse of the next stage flip flop is supplied to a reset terminal of the first flip flop and also to an enable terminal of the level shifter. Further, the level shifter output a sampling pulse with a beginning end equal to the beginning end of the pulse supplied to the input terminal and a terminal and equal to the beginning and of the pulse supplied to the enable terminal. With this arrangement, the subject invention provides a pulse output circuit, a driving circuit for a display device using the pulse output circuit, a display device and a pulse output method, that reduce delay of the terminal end of the pulse in sequentially outputting pulses from plural output terminals.
Abstract:
An arrangement and a method in an integrated circuit for tuning and setting a value comprising a comparator circuit having a reference voltage input and a variable voltage input is provided to produce a digital value on an output depending on a comparison between the reference voltage and the variable voltage. A first clocked counter circuit is connected to the comparator to increase or decrease the value of the first clocked counter depending on the digital value supplied from the comparator. The arrangement further comprises a second clocked counter circuit connected to the comparator to increase the value of the second clocked counter for each change of value of the comparator, and a locking circuit connected to the second clocked counter circuit to lock the value stored in the first clocked counter circuit from further changes when the second clocked counter reaches a first threshold value.
Abstract:
An analog-to-digital conversion device is provided that uses pulse delay circuits to convert an input voltage into numerical data and offers a high resolution in analog-to-digital conversion or a high analog-to-digital conversion rate. The analog-to-digital conversion device includes an analog-to-digital conversion unit having a pulse delay circuit composed of a plurality of delay units. The delay units are driven with a voltage produced by amplifying or shifting an input voltage. The number of delay units through which a pulse signal has passed during a predetermined sampling cycle is adopted as a digitized value of the input voltage. Herein, delay units constituting another pulse delay circuit are driven with a voltage produced by inversely amplifying or shifting the input voltage. Every time the number of delay units through which a pulse signal has passed within the pulse delay circuit reaches a predetermined value determined with a set value, a sampling signal is transferred to the analog-to-digital conversion unit.
Abstract:
A pulse modulation operation circuit includes a current bus, a plurality of switch current sources connected parallel to each other and commonly connected to the current bus for generating current pulses corresponding to external input signals, charge conversion element connected to the current bus for integrating the current pulses and converting them into a charge, and an output for converting the charge into a binary digital signal and outputting the binary digital signal. Each pulse width modulation signal is input to a corresponding one of the switch current sources, which in turn generates a constant current for a period corresponding to the width of each pulse of the signal, to convert each signal pulse into a current pulse. The thus-obtained current pulses are added on the common current bus, thereby obtaining, by capacitive integration, a total charge Q.sub.total proportional to the sum of the widths of the current pulses. To this end, a reference charge counter circuit has a function for integration and a function for digitizing the total charge Q.sub.total in units of a reference charge Q.sub.std in real time.
Abstract:
A Vernier delay line interpolator provides a precision level smaller than a clock period by delaying a periodic pulse signal in a delay line which has equally time-spaced taps and a total delay that is a harmonic H greater than 1 of the pulse period. The taps of the delay line are latched and decoded to derive the fraction of the pulse period that has passed. When the interpolator is combined with a coarse counter, misalignment between their outputs is prevented by having the coarse counter count both edges of the periodic pulse signal so as to provide redundant bits between the counter and the interpolator. If the redundant bits are not equal, the counter output is corrected before it is combined with the output of the interpolator.
Abstract:
There is provided a time counting circuit for measuring a pulse spacing of a pulse signal with high accuracy and with low power consumption. An inverter ring composed of an odd number of inverters connected in a ring oscillates and one signal transition occurs after another as though seemingly circulating around the inverter ring. Holding circuits connected to respective output terminals of the inverters composing the inverter ring output, on the rising edge of a pulse signal to be measured, signals outputted from the inverters at the same time. The outputted signals are then converted by a signal converting circuit to numeric data. A counter circuit connected to the output terminal of one of the inverters composing the inverter ring counts the number of circulations of signal transition. A time-difference operating circuit corrects the numeric data outputted from the signal converting circuit based on the number of circulations of signal transition outputted from the counter circuit to provide time data, while calculating and outputting the pulse spacing of the pulse signal to be measured.
Abstract:
There is disclosed a differential amplifier circuit wherein resistors (89, 91) and capacitors (90, 92) are connected respectively between sources of a differential pair of NMOS transistors (85, 87) and a power supply (2). The resistors (89, 91) raise the source potential of the NMOS transistors to reduce current flows during the time no transition of signal level outputted from the differential amplifier circuit occurs, reducing power consumption in the differential amplifier circuit. The capacitor (90, 92) alleviate the effects of voltage drop by the resistors (89, 91) during the signal level transition to prevent reduction in operating speed of the differential amplifier circuit.