Abstract:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
Abstract:
Embodiments of methods and apparatus for determining and/or quantizing a beamforming matrix are disclosed. In some embodiments, the determining and/or quantizing of the beamforming matrix may include the use of a base codebook and a differential codebook. Additional variants and embodiments are also disclosed.
Abstract:
Methods, systems, and devices for transmission and reception of SPS communications are disclosed herein. User equipment (UE) is configured to receive, in a first subframe, a physical downlink control channel or enhanced physical downlink control channel (PDCCH/EPDCCH) corresponding to semi-persistent scheduling (SPS) activation. The PDCCH/EPDCCH conveys a value of nSCID. The UE configures, based on the SPS activation, a downlink (DL) assignment in a second subframe for receiving an SPS physical downlink shared channel (PDSCH) without a corresponding PDCCH/EPDCCH. The UE determines a reference signal sequence corresponding to the SPS PDSCH using nSCID derived from the PDCCH/EPDCCH corresponding to the associated SPS activation. The UE receives the SPS PDSCH in a second subframe. The UE processes the SPS PDSCH based on the reference signal sequence for the SPS PDSCH in the second subframe using the nSCID derived from the PDCCH/EPDCCH corresponding to the associated SPS activation. The UE is configured for transmission mode 10 (TM10).
Abstract:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
Abstract:
Technology for an enhanced Node B (eNB) operable to map an enhanced physical downlink control channel (ePDCCH) to physical resource blocks in a radio frame is disclosed. The eNB can map modulated symbols in the ePDCCH to at least one control channel element (CCE). The eNB can map the at least one CCE to resource elements located in a plurality of physical resource blocks that are distributed in a subframe. The eNB can apply the mapping to control data for scheduling to form an ePDCCH. The eNB can process the ePDCCH for communication to a user equipment (UE).
Abstract:
Embodiments of the present disclosure include methods, apparatuses, and instructions for receiving at a user equipment (UE) of a third generation partnership project (3GPP) network an offset value selected from a plurality of offset values in downlink control information. The UE also receives one or more enhanced control channel elements (eCCEs) of an enhanced physical downlink control channel (ePDCCH). The UE may then determine an allocation of an uplink resource for a transmission on a physical uplink control channel (PUCCH) based at least in part on the index of a first eCCE and the offset value.
Abstract:
Embodiments of the present disclosure include methods, apparatuses, and instructions for receiving at a user equipment (UE) of a third generation partnership project (3GPP) network an offset value selected from a plurality of offset values in downlink control information. The UE also receives one or more enhanced control channel elements (eCCEs) of an enhanced physical downlink control channel (ePDCCH). The UE may then determine an allocation of an uplink resource for a transmission on a physical uplink control channel (PUCCH) based at least in part on the index of a first eCCE and the offset value.
Abstract:
A signal structure for use in D2D communications is described. In one embodiment, a preamble for automatic gain control at the receiver end is included in the transmitted signal. Techniques for scheduling of D2D transmissions using carrier sensing multiple access (CSMA) and a power control schemes for interference management are also described.
Abstract:
In embodiments, an evolved Node B (eNB) of a wireless communication network may configure an enhanced physical downlink control channel (EPDCCH) physical resource block (PRB) set for a user equipment (UE). The EPDCCH-PRB set may include a plurality of PRB-pairs. The EPDCCH-PRB set may further include a plurality of enhanced resource element groups (EREGs) organized into localized enhanced control channel elements (ECCEs) having EREGs of the same PRB-pair and distributed ECCEs having EREGs of different PRB-pairs. In some embodiments, the eNB may determine a set of distributed EPDCCH candidates for the UE from the EPDCCH-PRB set, wherein the individual distributed EPDCCH candidates include one or more of the distributed ECCEs, and wherein the set of distributed EPDCCH candidates includes at least one EREG from each of the plurality of localized ECCEs. Other embodiments may be described and claimed.
Abstract:
Methods for contention-based transmission with contention-free feedback for reduced latency in LTE Advanced networks and an enhanced PUCCH are generally disclosed herein. User equipment (UE) may transmit a contention sequence on a physical uplink control channel (PUCCH) to an enhanced-Node B (eNB) and may concurrently transmit data requesting uplink resources on a physical uplink shared channel (PUSCH) to the eNB. The contention sequence is transmitted on the PUCCH in accordance with a format that is assigned by the eNB. The contention sequence is either randomly selected by the UE or assigned by the eNB. When the contention sequence and data are not successfully received by the eNB, the UE may fall back to a more conventional random access channel (RACH) procedure for uplink resource allocation.