Abstract:
Some embodiments include memory cells which have multiple programmable material structures between a pair of electrodes. One of the programmable material structures has a first edge, and another of the programmable material structures has a second edge that contacts the first edge. Some embodiments include methods of forming an array of memory cells. First programmable material segments are formed over bottom electrodes. The first programmable material segments extend along a first axis. Lines of second programmable material are formed over the first programmable material segments, and are formed to extend along a second axis that intersects the first axis. The second programmable material lines have lower surfaces that contact upper surfaces of the first programmable material segments. Top electrode lines are formed over the second programmable material lines.
Abstract:
Techniques for reducing damage in memory cells are provided. Memory cell structures are typically formed using dry etch and/or planarization processes which damage certain regions of the memory cell structure. In one or more embodiments, certain regions of the cell structure may be sensitive to damage. For example, the free magnetic region in magnetic memory cell structures may be susceptible to demagnetization. Such regions may be substantially confined by barrier materials during the formation of the memory cell structure, such that the edges of such regions are protected from damaging processes. Furthermore, in some embodiments, a memory cell structure is formed and confined within a recess in dielectric material.
Abstract:
A variable-resistance material memory (VRMM) device includes a container conductor disposed over an epitaxial semiconductive prominence that is coupled to a VRMM. A VRMM device may also include a conductive plug in a recess that is coupled to a VRMM. A VRMM array may also include a conductive plug in a surrounding recess that is coupled to a VRMM. Apparatuses include the VRMM with one of the diode constructions.
Abstract:
A resistive memory structure, for example, phase change memory structure, includes one access device and two or more resistive memory cells. Each memory cell is coupled to a rectifying device to prevent parallel leak current from flowing through non-selected memory cells. In an array of resistive memory bit structures, resistive memory cells from different memory bit structures are stacked and share rectifying devices.
Abstract:
Memory devices having a plurality of memory cells, with each memory cell including a phase change material having a laterally constricted portion thereof. The laterally constricted portions of adjacent memory cells are vertically offset and positioned on opposite sides of the memory device. Also disclosed are memory devices having a plurality of memory cells, with each memory cell including first and second electrodes having different widths. Adjacent memory cells have the first and second electrodes offset on vertically opposing sides of the memory device. Methods of forming the memory devices are also disclosed.
Abstract:
A magnetic cell structure including a nonmagnetic bridge, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, and a nonmagnetic bridge electrically connecting the free layer and the pinned layer. The shape and/or configuration of the nonmagnetic bridge directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer of the structure is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
Abstract:
Vertical transistor phase change memory and methods of processing phase change memory are described herein. One or more methods include forming a dielectric on at least a portion of a vertical transistor, forming an electrode on the dielectric, and forming a vertical strip of phase change material on a portion of a side of the electrode and on a portion of a side of the dielectric extending along the electrode and the dielectric into contact with the vertical transistor.
Abstract:
Variable-resistance memory material cells are contacted by vertical bottom spacer electrodes. Variable-resistance material memory spacer cells are contacted along the edge by electrodes. Processes include the formation of the bottom spacer electrodes as well as the variable-resistance material memory spacer cells. Devices include the variable-resistance memory cells.
Abstract:
An array of nonvolatile memory cells includes a plurality of vertically stacked tiers of nonvolatile memory cells. The tiers individually include a first plurality of horizontally oriented first electrode lines and a second plurality of horizontally oriented second electrode lines crossing relative to the first electrode lines. Individual of the memory cells include a crossing one of the first electrode lines and one of the second electrode lines and material there-between. Specifically, programmable material, a select device in series with the programmable material, and current conductive material in series between and with the programmable material and the select device are provided in series with such crossing ones of the first and second electrode lines. The material and devices may be oriented for predominant current flow in defined horizontal and vertical directions. Method and other implementations and aspects are disclosed.