Abstract:
A method for pyrogasification of organic wastes that employs a vertical furnace filled with metal masses in the shape of metal toroids previously raised to a high temperature (500 to 1100° C.) and organic materials to be pyrolyzed. It also employs a furnace for heating toroids transported by an Archimedes screw driven by a gear motor, as well as a separator for recovering the mineral residues, whereby separation between the toroids and residues is effected with the aid of a screen and an Archimedes screw driven by a gear motor.
Abstract:
A waste processing system and method is described. The waste processing system may be used to treat any type of waste material that may be decomposed upon the application of energy, wherein recyclable metal and/or a gaseous end product is/are generated which may have commercial or industrial applications. The waste material may be reduced in size and passed to a purge vessel where the oxygen content of the waste material is reduced. The waste material is then heated in a heat exchanger which may be linearly elongated and passed to a conversion chamber where it is treated with H—H—O gas torches. A final gaseous end product is generated which may be used as a fuel source.
Abstract:
A multi-zone carbon converter for converting processed feedstock to syngas and slag is provided comprising a chamber comprising a carbon conversion zone in communication with a slag zone for melting ash into molten slag and/or for maintaining slag in a molten state by the application of plasma heat. The carbon conversion zone and the slag zone are separated by the inter-zonal region that comprises an impediment for restricting or limiting the movement of material between the two zones. The inter-zonal region may also provide for the initial melting of the ash into molten slag by affecting the transfer of plasma heat from the slag zone.
Abstract:
In a combustible energy recycling system and its method, the system includes an airtight incinerator body, a gas intake module and a blower. The incinerator body is filled with a combustible waste material, and the gas intake module installed in the incinerator body includes gas intake pipes, and one of the gas intake pipes is an ignition pipe for igniting the waste material in the incinerator body for a smoldering combustion, and an air outlet pipe of the blower is interconnected to the gas intake module for guiding outside air into the incinerator body, such that the outside air can move slowly upward with a high-temperature dense smoke produced in the smoldering combustion and surround every cross-section in the incinerator body for a uniform smoldering combustion, and a gas containing combustible energy in the dense smoke can be guided to a gas recycling mechanism for recycling and reusing the gas.
Abstract:
A process and system for oil-contaminated soil remediation and oil recovery from oil-bearing media such as oil-contaminated soil, different types of oil-bearing sludge's from oil producers, upgraders and refineries, oil shale, oil sands, and coal oil shale, oil sands and coal includes (1) a portable or fixed twin thermal desorption unit with two rotating trundles in one stationary house, and (2) multiple co-combustion burners burning coal, scrap tires, used oils, sludge's containing high oil content, propane and natural gas to supply heat for the twin desorption unit, and (3) a suction fan to create a slightly vacuum environment, receive vapors and send them to (4) a cooling line with a heavy component condenser to condense heavy oils, a set of air cooling pipe to condense light oils and steam and a three-phase (gas/oil/water) separation tank to separate oil from water, and (5) a feeding line with a blender to break wet lumps and a crasher to break rocks presence in the raw material being processed.
Abstract:
A method of waste stabilization by mineralization of waste material in situ in a treatment container suitable or treatment, transit, storage and disposal. The waste material may be mixed with mineralizing additives and, optionally, reducing additives, in the treatment container or in a separate mixing vessel. The mixture is then subjected to heat in the treatment container to heat-activate mineralization of the mixture and form a stable, mineralized, monolithic solid. This stabilized mass may then be transported in the same treatment container for storage and disposal.
Abstract:
A multi-step process is provided in which waste material is processed in two or more steps. Specifically, an earlier step of the process heats the waste material at a first temperature. This results in a release of vapors for materials having a boiling point that is lower than the first temperature. A subsequent step of the process heats some or all of the remaining waste material at a second temperature, which is preferably higher than the first temperature. The subsequent heating results in a release of additional vapors for those materials having a boiling point that is lower than the second temperature. A system configured to carry out the process is also disclosed.
Abstract:
A method and portable apparatus is described for the conversion of cellulose and other blomass waste materials through a pyrolysis and partial combustion sequence in a downdraft gasifier to produce a gas which can be immediately utilized to fuel an internal combustion engine in a generator set (genset). More specifically, the heat from the combustion of part of the cellulosic or other waste input is used to pyrolyze the remainder of the input to produce a mixture of permanent fuel gases. Particulates are removed (water scrubbers, filters) from the gas mixture which can then be used directly as a major part of the fuel to operate the internal combustion engine in the genset. All movement into, through, and out of the gasifier and purification train is controlled by the vacuum associated with the intake of the internal combustion engine, thereby ensuring a steady production of electricity.
Abstract:
The system includes a source of solid, liquid or sludge waste and a source of waste gas. A waste conversion device receives the solid, liquid or sludge waste and converts it into a hydrogen-rich gas. An internal combustion engine receives as fuel the hydrogen-rich gas and the waste gas and burns them to produce mechanical work. A generator is operatively connected to the internal combustion engine to generate electricity. Some of the generated electricity may be used to power the waste conversion device. The system allows for high-efficiency, lean-burn operation while reducing the amount of waste converted to hydrogen-rich gas.
Abstract:
Materials containing CH polymer chains are treated by a process comprising triggering combustion of the material in an environment insulated from the outside; removing gaseous combustion products from the environment under a vacuum; feeding combustion-supporting gas in a quantity insufficient to create centers of combustion while maintaining the environment under vacuum to favor a process of molecular decomposition of the material; condensing the gases, and collecting the condensate in a non-pressurized environment.