Abstract:
Systems and methods that facilitate reduced latency via stashing in multi-level cache memory architectures of systems on chips (SoCs) are provided. One method involves stashing, by a device includes a plurality of multi-processor central processing unit cores, first data into a first cache memory of a plurality of cache memories, the plurality of cache memories being associated with a multi-level cache memory architecture. The method also includes generating control information including: a first instruction to cause monitoring contents of a second cache memory of the plurality of cache memories to determine whether a defined condition is satisfied for the second cache memory; and a second instruction to cause prefetching the first data into the second cache memory of the plurality of cache memories based on a determination that the defined condition is satisfied.
Abstract:
A transceiver architecture contains an encoder and a decoder for communicating high speed transmissions. The encoder modulates signal data based on an FEC code that has a symbol size that is not matched to a symbol size of a hexacode. Any code where the symbol size is less than the sample size for coding can be serially concatenated. During decoding the multilevel decoding leech lattice and FEC decoder iteratively passes their outputs back and forth to each other until the encoded bits are decoded.
Abstract:
A decoupling capacitor circuit design facilitates high operational frequency without sacrificing area efficiency. In order to disassociate the sometimes opposing design criteria of high operational frequency and area efficiency, a p-channel field effect transistor (PFET) and an n-channel field effect transistor are connected in a half-cross-coupled (HCC) fashion. The HCC circuit is then supplemented by at least one area efficient capacitance (AEC) device. The half-cross-coupled transistors address the high frequency design requirement, while the AEC device(s) address the high area efficiency requirement. The design eliminates the undesirable trade-off between operating frequency and area efficiency inherent in some conventional DCAP designs.
Abstract:
Systems and methods for generating gapped signals comprising a Delta Sigma Modulator (DSM) configured to generate gapping control signals used to control gap removal rates of an associated gapping unit. The DSM is configured to generate a gapping control signal based on a value of an overflow resulted from performing adding a first number with a remainder of a stored value modulo a second number. The gap removal rates as well as the gap removal resolutions can be adjusted by selecting appropriate values of the first number, the stored value, and the second number. The gapping resolution can be a portion of a pulse. The first number and the second number may be derived from an intended frequency ratio between a gapped signal and a corresponding input signal. The gapping unit may comprise a gapping circuit or a multi-modulus divider.
Abstract:
Various aspects provide for aggregating a plurality of signals to generate a combined signal. An aggregation component is configured for reformatting a plurality of first signals and combining the plurality of first signals to generate a combined signal that comprises a higher data rate than a data rate associated with the plurality of first signals. A transmitter component is configured for receiving the combined signal and generating one or more data streams based on the combined signal. In an aspect, the aggregation component is additionally configured for reformatting and/or combining the plurality of first signals and at least one second signal to generate the combined signal. In another aspect, a receiver component is configured for generating a pseudo signal at a data rate of the combined signal. In yet another aspect, a de-aggregation component is configured for recovering the plurality of first signals and/or the at least one second signal from the pseudo signal.
Abstract:
A memory bus comprising a plurality of latches arranged sequentially between a source node and a destination node of a channel of the memory bus; and a pulse generator. The pulse generator is operable to generate a sequence of pulses, each sequential pulse to be simultaneously received by the plurality of latches. A pulse is generated for each edge of a clock signal. A first latch of the plurality of latches is operable to pass on a first data sample while a first pulse is received by the first latch of the plurality of latches. A second latch of the plurality of latches is operable to pass on a second data sample towards the first latch of the plurality of latches while the first pulse is simultaneously received by the first and second latches of the plurality of latches.
Abstract:
Cable systems and assemblies integrate a reduced number of twin axial copper pairs to transmit and received in a full-duplex transmission signals at transmission speeds greater than or equal to one hundred Giga bytes per second. The reduced number of twin axial copper pairs comprise four or less twin axial copper pairs, in which each pair forms a single twin axial full-duplex cable for passive or active communication of the signals. A processor can be integrated with the twin axial copper pairs operate to encode the signals for fast transmission speeds.
Abstract:
Cable systems and assemblies integrate a reduced number of twin axial cables to transmit and received in a full-duplex transmission signals at transmission speeds greater than or equal to one hundred Giga bytes per second. The reduced number of twin axial cables comprise four or less twin axial cables, in which each pair forms a single twin axial full-duplex cable for passive or active communication of the signals at multiple different transmission rates concurrently. A processor can be integrated with the twin axial cables and operate to encode the signals for fast transmission speeds at the different transmission rates.
Abstract:
Systems and methods that facilitate multi-word atomic operation support for systems on chip are described. One method involves: receiving an instruction associated with a calling process, and determining a first memory width associated with execution of the instruction based on an operator of the instruction and a width of at least one operand of the instruction. The instruction can be associated with an atomic operation. In some embodiments, the instruction contains a message having a first field identifying the operator and a second field identifying the operand.
Abstract:
A transceiver architectures can comprises an encoder and a decoder for communicating high speed transmissions. The encoder can modulate signal data for being mapped in a constellation that is generated based on a leech lattice. The data can be transmitted at a high speed according to the constellation with an embedded leech lattice configuration in order to generate a coding gain. A decoder operates to decode the received input signal data with a decreased latency or a minimal latency with a high spectral efficiency.