Abstract:
The present invention is related to a method of determining the temperature in a system, said system comprising a molecular heater fraction and a molecular thermometer fraction, and to an integrated system for temperature determination and temporally and spatially resolved thermal profile detection, and to uses of such system.
Abstract:
The invention relates to tuned multifunctional linker molecules for charge transport through organic-inorganic composite structures. The problem underlying the present invention is to provide multifunctional linker molecules for tuning the conductivity in nanoparticle-linker assemblies which can be used in the formation of electronic networks and circuits and thin films of nanoparticles. The problem is solved according to the invention by providing a multifunctional linker molecule of the general structure CON1-FUNC1-X-FUNC2-CON2 in which X is the central body of the molecule, FUNC1 and FUNC2 independently of each other are molecular groups introducing a dipole moment and/or capable of forming intermolecular and/or intramolecular hydrogen bonding networks, and CON1 and CON2 independently of each other are molecular groups binding to nanostructured units comprising metal and semiconductor materials.
Abstract:
The invention relates to a method for providing a substrate structure for oriented neurite outgrowth, wherein a basic substrate is provided, characterized in that at least one alignment layer is deposited on said substrate and a mono- or multi-layer of a liquid crystal material is deposited on said at least one alignment layer or a combined alignment layer is deposited on said substrate, thereby providing a structured surface.
Abstract:
The invention relates to tuned multifunctional linker molecules for charge transport through organic-inorganic composite structures. The problem underlying the present invention is to provide multifunctional linker molecules for tuning the conductivity in nanoparticle-linker assemblies which can be used in the formation of electronic networks and circuits and thin films of nanoparticles. The problem is solved according to the invention by providing a multi-functional linker molecule of the general structure CON1-FUNC1-X-FUNC2-CON2 in which X is the central body of the molecule, FUNC1 and FUNC2 independently of each other are molecular groups introducing a dipole moment and/or capable of forming intermolecular and/or intramolecular hydrogen bonding networks, and CON1 and CON2 independently of each other are molecular groups binding to nanostructured units comprising metal and semiconductor materials.
Abstract:
A hybrid solar cell device comprising: a substrate material (substrate), an electrode material (EM), a hole transport material (HTM), a dye material (dye), and a semiconductive oxide layer (SOL), wherein a structure of the hybrid solar cell device is selected from a group consisting of: Substrate+EM/HTM/dye/SOL/EM, or Substrate+EM/SOL/dye/HTM/EM, or Substrate+EM/HTM/SOL/EM, and wherein the EM is selected from a group consisting of a transparent conductive oxide (TCO), a transparent conductive polymer or a transparent organic material, and a metal, with at least one of the EM layer(s) of the hybrid solar cell being a TCO, and wherein the SOL comprises a dense semiconductive oxide layer.
Abstract translation:一种混合太阳能电池装置,包括:基板材料(基板),电极材料(EM),空穴传输材料(HTM),染料(染料)和半导体氧化物层(SOL),其中, 混合太阳能电池器件选自由以下组成的组:<?in-line-formula description =“In-line formula”end =“lead”?>衬底+ EM / HTM /染料/ SOL / EM或< -line-formula description =“In-line Formulas”end =“tail”?> <?in-line-formula description =“In-line formula”end =“lead”?>底物+ EM / SOL / dye / HTM / EM或<?in-line-formula description =“In-line Formulas”end =“tail”?> <?in-line-formula description =“In-line Formulas”end =“lead”?> Substrate + EM / HTM / SOL / EM和<?in-line-formula description =“In-line Formulas”end =“tail”?>其中EM选自透明导电氧化物(TCO), 透明导电聚合物或透明有机材料和金属,其中至少一个混合太阳能电池的EM层是T CO,并且其中SOL包含致密的半导体氧化物层。
Abstract:
The present invention relates to a method of controlling light diffusion and/or glare from a surface, in particular from a reflective back plane. It furthermore relates to a display with controlled light diffusion and to the use of a nanoparticle film for controlling light diffusion and/or glare from a surface.
Abstract:
The present invention relates to a method of activating a silicon surface for subsequent patterning of molecules onto said surface, and to patterns produced by this method, and further to uses of said pattern.
Abstract:
A control unit receives a sensor output and performs signal processing on the sensor output to produce an internal signal. The control unit produces internal data by adding time data to an internal signal and transmits the internal data to an in-vehicle network. A diagnostic unit receives the internal data from the in-vehicle network and stores the internal data in an internal data storing device. The diagnostic unit also receives a measurement signal produced based on the sensor output. The diagnostic unit produces external data by adding time data containing time at which the second timer resets a time count when an ignition switch is closed and stores the external data. The diagnostic unit reproduces the internal data and the external data and extracts the internal signal and the measurement signal. The diagnostic unit displays or stores the internal signal and the measurement signal according to the time data.
Abstract:
The invention relates to a method for defect and conductivity engineering of an individual part in a conducting nanoscaled structure by generating heat-induced migration, melting, sputtering and/or evaporation of conductive material of the nanoscaled structure by directing a focussed electron beam on this individual part of the structure to be engineered. The invention further relates to the use of a secondary electron microscope having a filter for detecting back scattered electrons for such a method and a respective secondary electron microscope having such a filter for detecting back scattered electrons.
Abstract:
The invention relates to a process for the metallization of nucleic acids, comprising providing tris(hydroxymethyl)phosphine-Au (THP-Au) particles or derivatives thereof, binding said THP-Au particles to a nucleic acid to produce a metal nanoparticle-nucleic acid composite, and treatment of the metal nanoparticle-nucleic acid composite with an electroless plating solution. The invention further relates to a metallized nucleic acid obtainable according to such a method and a nanowire including a method for the manufacture of a nanowire.