Abstract:
A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
Abstract:
A semiconductor device includes: a SOI substrate including a support layer, a first insulation film and a SOI layer; a first circuit; a second circuit; and a trench separation element. The SOI substrate further includes a first region and a second region. The first region has the support layer, the first insulation film and the SOI layer, which are stacked in this order, and the second region has only the support layer. The trench separation element penetrates the support layer, the first insulation film and the SOI layer. The trench separation element separates the first region and the second region. The first circuit is disposed in the SOI layer of the first region. The second circuit is disposed in the support layer of the second region.
Abstract:
A semiconductor device includes a semiconductor substrate, a plurality of memory cells, a plurality of bit lines, and a plurality of source lines. The memory cells are located in the semiconductor substrate. Each of the memory cells includes a trench provided in the semiconductor substrate, an oxide layer disposed on a sidewall of the trench, a tunnel oxide layer disposed at a bottom portion of the trench, a floating gate disposed in the trench so as to be surrounded by the oxide layer and the tunnel oxide layer, and an erasing electrode disposed on an opposing side of the tunnel oxide layer from the floating gate. The bit lines and the source lines are alternately arranged on the memory cells in parallel with each other.
Abstract:
A magnetic sensor includes: a substrate; a semiconductor region; a magnetic field detection portion; a pair of first electrodes; and two pairs of second electrodes. One pair of second electrodes includes first and second terminals, and the other pair includes third and fourth terminals. The first and third terminals are disposed on one side, and the second and fourth terminals are disposed on the other side. The first and fourth terminals are electrically coupled, and the second and third terminals are electrically coupled. The magnetic field detection portion and the first and second electrodes provide a vertical Hall element. One of the first and second electrodes supplies a driving current, and the other one detects the Hall voltage.
Abstract:
A semiconductor apparatus comprises: a semiconductor substrate; and a lateral type MIS transistor disposed on a surface part of the semiconductor substrate. The lateral type MIS transistor includes: a line coupled with a gate of the lateral type MIS transistor; a polycrystalline silicon resistor that is provided in the line, and that has a conductivity type opposite to a drain of the lateral type MIS transistor; and an insulating layer through which a drain voltage of the lateral type MIS transistor is applied to the polycrystalline silicon resistor.
Abstract:
A semiconductor wafer has two faces, one of which is a laser light incident face. A dicing sheet is attached to the other face of the wafer, so that it is stretched to thereby apply tensile stress to a laser-reformed region and cause cutting with the reformed region taken as a starting point for cutting. A protection layer, such as light scattering projections and depressions, a light scattering member or a light reflecting member, is provided between the wafer and the dicing sheet to scatter or reflect the laser light passing through the wafer. Thus, the dicing sheet can be protected from being damaged because the laser light converging point is not formed in the dicing sheet.
Abstract:
A device separated from a wafer includes: a chip having a sidewall, which is provided by a dicing surface of the wafer in a case where the device is separated from the wafer; and a protection member disposed on the sidewall of the chip for protecting the chip from being contaminated by a dust from the dicing surface. In the device, the dicing surface of the wafer is covered with the protection member so that the chip is prevented from contaminated with the dust.
Abstract:
A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
Abstract:
A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
Abstract:
A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.