Abstract:
A substrate having thereon a first dielectric layer, a second dielectric layer, and a hard mask layer is provided. A partial via is formed in the second dielectric layer and the hard mask layer. A first photoresist pattern with a first trench opening above the partial via and a second trench opening is formed on the hard mask layer. The hard mask layer and the second dielectric layer are etched through the first trench opening and the second trench opening, thereby forming a first dual damascene structure comprising a first trench and a first via, and a second trench in the second dielectric layer, respectively. A second photoresist pattern having a self-aligned via opening above the second trench is formed. The second dielectric layer is etched through the self-aligned via opening, thereby forming a second dual damascene structure comprising the second trench and a second via under the second trench.
Abstract:
A manufacturing method of a patterned structure of a semiconductor device includes following steps. A plurality of support features are formed on a substrate. A first conformal spacer layer is formed on the support features and a surface of the substrate, a second conformal spacer layer is formed on the first conformal spacer layer, and a covering layer is formed on the second conformal spacer layer. A gap between the support features is filled with the first conformal spacer layer, the second conformal spacer layer, and the covering layer. A first process is performed to remove a part of the covering layer, the second conformal spacer layer, and the first conformal spacer layer. A second process is performed to remove the support features or the first conformal spacer layer between the support feature and the second conformal spacer layer to expose a part of the surface of the substrate.
Abstract:
A FinFET is provided. The FinFET includes a substrate. A plurality of fin structures are defined on the substrate. A gate structure crosses each fin structure. Two first recesses are disposed on two sides of the gate structure respectively, wherein each first recess further includes a plurality of second recesses disposed therein, and the position of each second recess corresponds to each fin structure. Two epitaxial layers are disposed at two sides of the gate structure respectively and in the first recesses, each epitaxial layer has a bottom surface including a second concave and convex profile, and each epitaxial layer directly contacts a bottom surface of each first recess and a bottom surface of each second recess.
Abstract:
A semiconductor processing method is provided and includes the following steps. A first semiconductor process is performed for a wafer to obtain plural overlay datum (x, y), wherein x and y are respectively shift values in X-direction and Y-direction. Next, A re-correct process is performed by a computer, wherein the re-correct process comprises: (a) providing an overlay tolerance value (A, B) and an original out of specification value (OOS %), wherein A and B are respectively predetermined tolerance values in X-direction and Y-direction; (b) providing at least a k value (kx, ky); (c) modifying the overlay datum (x, y) according to the k value (kx, ky) to obtain at least a revised overlay datum (x′, y′) ; and (d) calculating a process parameter from the revised overlay datum (x′, y′). Lastly, a second semiconductor process is performed according to the process parameter . . . . The present invention further provides a lithography system.
Abstract:
A semiconductor device includes: a substrate, a fin-shaped structure on the substrate, and a dummy fin-shaped structure on the substrate and adjacent to the fin-shaped structure. Preferably, the fin-shaped structure includes a gate structure thereon and a first epitaxial layer adjacent to two sides of the gate structure, and the dummy fin-shaped structure includes a second epitaxial layer thereon. A contact plug is disposed on the first epitaxial layer and the second epitaxial layer. In addition, the dummy fin-shaped structure includes a curve, in which the curve is omega shaped.
Abstract:
The present invention provides a method for forming a semiconductor structure. Firstly, a substrate is provided, the substrate comprises an insulating layer and at least one first nano channel structure disposed thereon, a first region and a second region being defined on the substrate, next, a hard mask is formed within the first region, afterwards, an etching process is performed, to remove parts of the insulating layer within the second region, an epitaxial process is then performed, to form an epitaxial layer on the first nano channel structure, and an anneal process is performed, to transform the first nano channel structure and the epitaxial layer into a first nanowire structure, wherein the diameter of the first nanowire structure within the first region is different from the diameter of the first nanowire structure within the second region.
Abstract:
A semiconductor device and a method of fabricating the same, the semiconductor device includes a plurality of fin shaped structures, a trench, a spacing layer and a dummy gate structure. The fin shaped structures are disposed on a substrate. The trench is disposed between the fin shaped structures. The spacing layer is disposed on sidewalls of the trench, wherein the spacing layer has a top surface lower than a top surface of the fin shaped structures. The dummy gate structure is disposed on the fin shaped structures and across the trench.
Abstract:
A semiconductor device having metal gate includes a substrate, a metal gate formed on the substrate, a pair of spacers formed on sidewalls of the metal gate, a contact etch stop layer (CESL) covering the spacers, an insulating cap layer formed on the metal gate, the spacers and the CESL, and an ILD layer surrounding the metal gate, the spacers, the CESL and the insulating cap layer. The metal gate, the spacers and the CESL include a first width, and the insulating cap layer includes a second width. The second width is larger than the first width. And a bottom of the insulating cap layer concurrently contacts the metal gate, the spacers, the CESL, and the ILD layer.
Abstract:
The present invention provides an overlay mark information, including at least a pair of first overlay mark patterns disposed in a first layer, each first overlay mark pattern consisting of a plurality of first mark units arranged along a first direction, where each first mark unit includes at least one first pattern and at least one second pattern, and the dimension of the first pattern is different from the dimension of the second pattern. The overlay mark information also includes at least a pair of second overlay patterns disposed in the first layer, each second overlay mark pattern consisting of a plurality of second mark units arranged along the first direction, where the pattern of each first mark unit is the same as the pattern of each second mark unit after 180 degrees rotated.
Abstract:
A semiconductor device includes a semiconductor structure, a plurality of gate structures, at least one source/drain structure, at least one trench, a dielectric pattern, and a conductive structure. The gate structures are disposed on the semiconductor structure. The source/drain structure is disposed between two adjacent gate structures. The trench is disposed between the two adjacent gate structures and corresponding to the source/drain structure. The dielectric pattern is disposed on sidewalls of the trench. The conductive structure is disposed in the trench and electrically connected to the source/drain structure. The conductive structure includes a first portion surrounded by the dielectric pattern and a second portion connected to the source/drain structure, and the first portion is disposed on the second portion. A width of the first portion is smaller than a width of the second portion.