Abstract:
A quantum well transistor has a germanium quantum well channel region. A silicon-containing etch stop layer provides easy placement of a gate dielectric close to the channel. A group III-V barrier layer adds strain to the channel. Graded silicon germanium layers above and below the channel region improve performance. Multiple gate dielectric materials allow use of a high-k value gate dielectric.
Abstract:
Techniques are disclosed for forming a non-planar germanium quantum well structure. In particular, the quantum well structure can be implemented with group IV or III-V semiconductor materials and includes a germanium fin structure. In one example case, a non-planar quantum well device is provided, which includes a quantum well structure having a substrate (e.g. SiGe or GaAs buffer on silicon), a IV or III-V material barrier layer (e.g., SiGe or GaAs or AlGaAs), a doping layer (e.g., delta/modulation doped), and an undoped germanium quantum well layer. An undoped germanium fin structure is formed in the quantum well structure, and a top barrier layer deposited over the fin structure. A gate metal can be deposited across the fin structure. Drain/source regions can be formed at respective ends of the fin structure.
Abstract:
Transistor structures having channel regions comprising alternating layers of compressively and tensilely strained epitaxial materials are provided. The alternating epitaxial layers can form channel regions in single and multigate transistor structures. In alternate embodiments, one of the two alternating layers is selectively etched away to form nanoribbons or nanowires of the remaining material. The resulting strained nanoribbons or nanowires form the channel regions of transistor structures. Also provided are computing devices comprising transistors comprising channel regions comprised of alternating compressively and tensilely strained epitaxial layers and computing devices comprising transistors comprising channel regions comprised of strained nanoribbons or nanowires.
Abstract:
Embodiments described include straining transistor quantum well (QW) channel regions with metal source/drains, and conformal regrowth source/drains to impart a uni-axial strain in a MOS channel region. Removed portions of a channel layer may be filled with a junction material having a lattice spacing different than that of the channel material to causes a uni-axial strain in the channel, in addition to a bi-axial strain caused in the channel layer by a top barrier layer and a bottom buffer layer of the quantum well.
Abstract:
A process capable of integrating both planar and non-planar transistors onto a bulk semiconductor substrate, wherein the channel of all transistors is definable over a continuous range of widths.
Abstract:
Enhancement mode transistors are described where a Group III-N compound is used in the source and drain regions to place tensile strain on the channel. The source and drain regions may be raised or embedded, and fabricated in conjunction with recessed or raised compression regions for p channel transistors.
Abstract:
Modulation-doped multi-gate devices are generally described. In one example, an apparatus includes a semiconductor substrate having a surface, one or more buffer films coupled to the surface of the semiconductor substrate, a first barrier film coupled to the one or more buffer films, a multi-gate fin coupled to the first barrier film, the multi-gate fin comprising a source region, a drain region, and a channel region of a multi-gate device wherein the channel region is disposed between the source region and the drain region, a spacer film coupled to the multi-gate fin, and a doped film coupled to the spacer film.
Abstract:
Modulation-doped multi-gate devices are generally described. In one example, an apparatus includes a semiconductor substrate having a surface, one or more buffer films coupled to the surface of the semiconductor substrate, a first barrier film coupled to the one or more buffer films, a multi-gate fin coupled to the first barrier film, the multi-gate fin comprising a source region, a drain region, and a channel region of a multi-gate device wherein the channel region is disposed between the source region and the drain region, a spacer film coupled to the multi-gate fin, and a doped film coupled to the spacer film.
Abstract:
Reducing external resistance of a multi-gate device using spacer processing techniques is generally described. In one example, a method includes depositing a sacrificial gate electrode to one or more multi-gate fins, the one or more multi-gate fins comprising a gate region, a source region, and a drain region, the gate region being disposed between the source and drain regions, patterning the sacrificial gate electrode such that the sacrificial gate electrode material is coupled to the gate region and substantially no sacrificial gate electrode is coupled to the source and drain regions of the one or more multi-gate fins, forming a dielectric film coupled to the source and drain regions of the one or more multi-gate fins, removing the sacrificial gate electrode from the gate region of the one or more to multi-gate fins, depositing spacer gate dielectric to the gate region of the one or more multi-gate fins wherein substantially no spacer gate dielectric is deposited to the source and drain regions of the one or more multi-gate fins, the source and drain regions being protected by the dielectric film, and etching the spacer gate dielectric to completely remove the spacer gate dielectric from the gate region area to be coupled with a final gate electrode except a remaining pre-determined thickness of spacer gate dielectric to be coupled with the final gate electrode that remains coupled with the dielectric film.
Abstract:
Techniques and structures for increasing body dopant uniformity in multi-gate transistor devices are generally described. In one example, an electronic device includes a semiconductor substrate, a multi-gate fin coupled with the semiconductor substrate, the multi-gate fin comprising a source region, a drain region, and a gate region wherein the gate region is disposed between the source region and the drain region, the gate region being body-doped after a sacrificial gate structure is removed from the multi-gate fin and before a subsequent gate structure is formed, a dielectric material coupled with the source region and the drain region of the multi-gate fin, and the subsequent gate structure coupled to the gate region of the multi-gate fin.