Abstract:
According to the embodiment, a substrate treating device 1 that rotates and washes a substrate, the device includes a spinning holding mechanism for holding a substrate, a treatment liquid supply nozzle for supplying a treatment liquid to the substrate, a shielding plate that is arranged opposite to the substrate held by the spinning holding mechanism and that moves in a contact/separate direction with respect to the substrate, a shielding plate rotating mechanism for rotating the shielding plate, and a control device for controlling the shielding plate rotating mechanism to rotate the shielding plate without moving the shielding plate from a standby position when the treatment liquid is supplied from the treatment liquid supply nozzle. It is possible to prevent contamination of a substrate during the treatment process.
Abstract:
According to one embodiment, a method for manufacturing a reflective mask includes: forming a reflection layer on a major surface of a substrate; forming a capping layer containing ruthenium on the reflection layer; forming an absorption layer on the capping layer; forming a pattern region in the absorption layer; removing a first resist mask used in forming the pattern region; and forming a light blocking region surrounding the pattern region in the absorption layer, the capping layer, and the reflection layer. The removing the first resist mask used in forming the pattern region includes: performing dry ashing processing using a mixed gas of ammonia gas and nitrogen gas or only ammonia gas.
Abstract:
According to one embodiment, a method is disclosed for manufacturing a reflective mask. The method can include forming a reflection layer on a major surface of a substrate. The method can include forming an absorption layer on the reflection layer. The method can include forming a pattern region in the absorption layer. In addition, the method can include forming a light blocking region surrounding the pattern region in the absorption layer and the reflection layer. The forming the light blocking region includes etching-processing the reflection layer using a gas containing chlorine and oxygen.
Abstract:
The embodiment of a substrate treatment device includes a treatment bath configured to store a treatment liquid in which a treatment object is to be immersed, a transport section configured to transport the treatment object, a temperature control section provided in at least one of the treatment bath and a position spaced from the treatment bath and configured to perform at least one of heating and cooling of the treatment object. the treatment object is at least one of: a laminated substrate including a device substrate, a support substrate, and an adhesive provided between the device substrate and the support substrate, the device substrate with the adhesive attached thereto, and the support substrate with the adhesive attached thereto.
Abstract:
According to one embodiment, a method for manufacturing a reflective mask includes: forming a reflection layer on a major surface of a substrate; forming a capping layer containing ruthenium on the reflection layer; forming an absorption layer on the capping layer; forming a pattern region in the absorption layer; removing a first resist mask used in forming the pattern region; and forming a light blocking region surrounding the pattern region in the absorption layer, the capping layer, and the reflection layer. The removing the first resist mask used in forming the pattern region includes: performing dry ashing processing using a mixed gas of ammonia gas and nitrogen gas or only ammonia gas.
Abstract:
A substrate processing device 10 has a water removing unit 110 and, when a solvent supply unit 58 supplies a volatile solvent to a surface of a substrate W, the water removing unit 110 supplies a water removing agent to the surface of the substrate W to promote replacement of the cleaning water on the surface of the substrate W with the volatile solvent.
Abstract:
A spin treatment apparatus according to an embodiment includes: an annular liquid receiver surrounding a rotating substrate at a distance from an outer periphery of the substrate and configured to receive liquid flying from the rotating substrate and accommodate the liquid; an annular cup body surrounding the liquid receiver at a distance from an outer periphery of the liquid receiver and forming an annular outer exhaust flow channel for generating an airflow along an upper surface to an outer peripheral surface of the liquid receiver; and an annular partitioning member provided inside the annular liquid receiver and forming an annular inner exhaust flow channel for generating an airflow along an inner peripheral surface to a lower surface of the liquid receiver.
Abstract:
According to one embodiment, a method is disclosed for manufacturing a reflective mask. The method can include forming a reflection layer on a major surface of a substrate. The method can include forming an absorption layer on the reflection layer. The method can include forming a pattern region in the absorption layer. In addition, the method can include forming a light blocking region surrounding the pattern region in the absorption layer and the reflection layer. The forming the light blocking region includes etching-processing the reflection layer using a gas containing chlorine and oxygen.
Abstract:
According to one embodiment, a plasma processing apparatus includes: a processing chamber; a decompression section configured to decompress inside of the processing chamber; a member including a control section to be inserted into a depression provided on mounting side of a workpiece, the control section being configured to thereby control at least one of in-plane distribution of capacitance of a region including the workpiece and in-plane distribution of temperature of the workpiece; a mounting section provided inside the processing chamber; a plasma generating section configured to supply electromagnetic energy to a region for generating a plasma for performing plasma processing on the workpiece; and a gas supply section configured to supply a process gas to the region for generating a plasma. The control section performs control so that at least one of the in-plane distribution of capacitance and the in-plane distribution of temperature is made uniform.
Abstract:
An elongation amount of electronic parts to be bonded onto a substrate by thermocompression is accurately controlled, and thereby poor connection of the electronic parts is prevented. An electronic part compression bonding apparatus according to the present invention includes a compression bonding unit (41) which bonds the electronic parts onto the substrate by thermocompression, a pressure supply unit (48), a pressure control unit (83) which controls pressure, a heating unit (43) which heats the compression bonding unit (41), a temperature control unit (85), and a thermocompression bonding control unit (80) which controls the pressure control unit (83) and the heating unit (43) based on thermocompression bonding condition data in which at least one of pressure and heating temperature is variably set during a process from start until completion of a thermocompression bonding operation of the electronic parts. In the thermocompression bonding condition data, the pressure is set to be first pressure in a first stage in a process of the thermocompression bonding operation and second pressure, which is lower than the first pressure, in a second stage that follows the first stag