Abstract:
A variable-resistance material memory array includes a series of variable-resistance material memory cells. The series of variable-resistance material memory cells can be arranged in parallel with a corresponding series of control gates. A select gate can also be disposed in series with the variable-resistance material memory cells. Writing/reading/erasing to a given variable-resistance material memory cell can include turning off the corresponding control gate, while turning on all other control gates. Various devices can include such a variable-resistance material memory array.
Abstract:
Techniques for reducing damage in memory cells are provided. Memory cell structures are typically formed using dry etch and/or planarization processes which damage certain regions of the memory cell structure. In one or more embodiments, certain regions of the cell structure may be sensitive to damage. For example, the free magnetic region in magnetic memory cell structures may be susceptible to demagnetization. Such regions may be substantially confined by barrier materials during the formation of the memory cell structure, such that the edges of such regions are protected from damaging processes. Furthermore, in some embodiments, a memory cell structure is formed and confined within a recess in dielectric material.
Abstract:
In some embodiments, an integrated circuit includes narrow, vertically-extending pillars that fill openings formed in the integrated circuit. In some embodiments, the openings can contain phase change material to form a phase change memory cell. The openings occupied by the pillars can be defined using crossing lines of sacrificial material, e.g., spacers, that are formed on different vertical levels. The lines of material can be formed by deposition processes that allow the formation of very thin lines. Exposed material at the intersection of the lines is selectively removed to form the openings, which have dimensions determined by the widths of the lines. The openings can be filled, for example, with phase change material.
Abstract:
Some embodiments include apparatus and methods having a memory device with diodes coupled to memory elements. Each diode may be formed in a recess of the memory device. The recess may have a polygonal sidewall. The diode may include a first material of a first conductivity type (e.g., n-type) and a second material of a second conductive type (e.g., p-type) formed within the recess.
Abstract:
A variable resistance memory array, programming a variable resistance memory element and methods of forming the array. A variable resistance memory array is formed with a plurality of word line transistors surrounding each phase change memory element. To program a selected variable resistance memory element, all of the bitlines are grounded or biased at the same voltage. A top electrode select line that is in contact with the selected variable resistance memory element is selected. The word line having the word line transistors surrounding the selected variable resistance memory element are turned on to supply programming current to the element. Current flows from the selected top electrode select line through the variable resistance memory element into the common source/drain region of the surrounding word line transistors, across the transistors to the nearest bitline contacts. The word lines are patterned in various lattice configurations.
Abstract:
An array of memory cells includes buried access lines having conductively doped semiconductor material. Pillars extend elevationally outward of and are spaced along the buried access lines. The pillars individually include a memory cell. Outer access lines are elevationally outward of the pillars and the buried access lines. The outer access lines are of higher electrical conductivity than the buried access lines. A plurality of conductive vias is spaced along and electrically couple pairs of individual of the buried and outer access lines. A plurality of the pillars is between immediately adjacent of the vias along the pairs. Electrically conductive metal material is directly against tops of the buried access lines and extends between the pillars along the individual buried access lines. Other embodiments, including method, are disclosed.
Abstract:
Some embodiments include apparatus and methods having a memory device with diodes coupled to memory elements. Each diode may be formed in a recess of the memory device. The recess may have a polygonal sidewall. The diode may include a first material of a first conductivity type (e.g., n-type) and a second material of a second conductive type (e.g., p-type) formed within the recess.
Abstract:
Variable-resistance material memories include a buried salicide word line disposed below a diode. Variable-resistance material memories include a metal spacer spaced apart and next to the diode. Processes include the formation of one of the buried salicide word line and the metal spacer. Devices include the variable-resistance material memories and one of the buried salicided word line and the spacer word line.
Abstract:
Disclosed is an array of nonvolatile memory cells includes five memory cells per unit cell. Also disclosed is an array of vertically stacked tiers of nonvolatile memory cells that includes five memory cells occupying a continuous horizontal area of 4F2 within an individual of the tiers. Also disclosed is an array of nonvolatile memory cells comprising a plurality of unit cells which individually comprise three elevational regions of programmable material, the three elevational regions comprising the programmable material of at least three different memory cells of the unit cell. Also disclosed is an array of vertically stacked tiers of nonvolatile memory cells that includes a continuous volume having a combination of a plurality of vertically oriented memory cells and a plurality of horizontally oriented memory cells. Other embodiments and aspects are disclosed.
Abstract:
An array of memory cells includes buried access lines having conductively doped semiconductor material. Pillars extend elevationally outward of and are spaced along the buried access lines. The pillars individually include a memory cell. Outer access lines are elevationally outward of the pillars and the buried access lines. The outer access lines are of higher electrical conductivity than the buried access lines. A plurality of conductive vias is spaced along and electrically couple pairs of individual of the buried and outer access lines. A plurality of the pillars is between immediately adjacent of the vias along the pairs. Electrically conductive metal material is directly against tops of the buried access lines and extends between the pillars along the individual buried access lines. Other embodiments, including method, are disclosed.