Abstract:
A method of communicating data in a Bluetooth™ low energy (BLE) module is provided. The method includes modulating an outbound communication signal into a modulated signal with a particular modulation scheme based on a modulation type, and transmitting the modulated signal to a remote device via a wireless communication connection associated with the modulation type. The method also includes receiving an inbound radio frequency (RF) signal, determining if the inbound RF signal is associated with a modulation type, and demodulating the inbound RF signal with a particular modulation scheme based on the modulation type if the inbound RF signal is determined to be associated with a modulation type. In some aspects, the inbound RF signal and outbound modulated signal have symbol rates of 2 Megasymbols per second. In some implementations, the method includes switching between a legacy BLE system and an enhanced rate BLE system.
Abstract:
A three-dimensional multiple spiral antenna includes a substrate, a plurality of spiral antenna sections, and a feed point module. The substrate has a three-dimensional shaped region and each spiral antenna section is supported by a corresponding section of the three-dimensional shaped region and conforms to the corresponding section of the three-dimensional shaped region such that, collectively, the spiral antenna sections have an overall shape approximating a three-dimensional shape. The feed point module is coupled to a connection point of at least one of the spiral antenna sections.
Abstract:
One or more processors and/or one or more circuits may be operable to configure one or more virtual machines and a hypervisor for controlling the one or more virtual machines. The virtual machines and the hypervisor may be distributed across a plurality of network devices. A sub-hypervisor may be configured within each of the virtual machines utilizing the hypervisor. Load information of the network devices may be communicated to the hypervisor utilizing the sub-hypervisors. The virtual machines may include threads, may be load balanced utilizing the hypervisor, dynamically configured utilizing the hypervisor based on changes in the network devices, and scaled by the distribution of the virtual machines across the network devices. Information from the processing of data may be received in the virtual machines. The network devices may include a plurality of: servers, switches, routers, racks, blades, mainframes, personal data assistants, smart phones, desktop computers, and/or laptop devices.
Abstract:
A system and method for efficient buffer management for banked shared memory designs are provided. In one embodiment, a controller within the switch is configured to manage the buffering of the shared memory banks by allocating full address sets to write sources. Each full address set that is allocated to a write source includes a number of memory addresses, wherein each memory address is associated with a different shared memory bank. A size of the full address set can be based on a determined number of buffer access contenders.
Abstract:
Protocol adaptation layer for wireless communications. Communication devices that include one or more radio modules operable in accordance with multiple communication protocols establish communications using one communication protocol and then switch to another communication protocol. This switching to another communication protocol may be performed based on a variety of factors including effectuating communications of higher throughput, supporting uni-directional communications vs. bi-directional communications, or any other desired factor. In some embodiments, various communication devices include two radio modules that are each implemented to operate in accordance with one particular communication protocol. Alternatively, a multi-protocol capable radio module may support and operate in accordance with more than one communication protocol. Examples of possible communication protocols include those compliant with Bluetooth, IEEE 802.11, and/or 802.15.3c.
Abstract:
A voltage controlled oscillator (VCO) with low phase noise and a sharp output spectrum is desirable. The present disclosure provides embodiments of LC tank VCOs that generate output signals with less phase noise compared with conventional LC tank VCOs, while at the same time limiting additional cost, size, and/or power. The embodiments of the present disclosure can be used, for example, in wired or wireless communication systems that require low-phase noise oscillator signals for performing up-conversion and/or down-conversion.
Abstract:
For use in offloading traffic to a wireless local area network (WLAN) a user equipment (UE) receives from a wireless wide area network at least a first set of thresholds having different thresholds corresponding to different types of data to be offloaded. The UE utilizes the threshold corresponding to a given type of data to evaluate whether an access node operating in the WLAN is suitable for offloading data of the given type. Only if the evaluated access node is determined to be suitable will the UE use it for offloading, and only for data of the given type. In other non-limiting embodiments the first set of thresholds has different thresholds corresponding to different data-types for different catergories (e.g., subscription levels) of the UE; and there may be a second set of thresholds with different thresholds corresponding to different classifications of different WLAN access nodes.
Abstract:
A method and system for coding or decoding is disclosed. The system or method may receive a chroma subsampled picture and map the chroma subsampled picture into a non chroma subsampled format picture. The system or method may receive a non chroma subsampled picture and remap the samples into a chroma subsampled picture.
Abstract:
Aspects of the subject disclosure may include, for example, a channel learning entity is configured to receive a priori network data via a transceiver. The channel learning entity generates at least one measurement of the communication environment based on the a priori network data, and generates first report data for transmission via the transceiver based on the at least one measurement of the communication environment. Other embodiments are disclosed.
Abstract:
Disclosed are various embodiments of adaptive management of a device. The adaptive management includes, e.g., power management, energy management, and diagnostics. In one embodiment, a device including a power management unit (PMU) communicatively coupled to a processor is configured to transmit a status notification to the processor in response to an interrupt signal; obtain a high level state command from the processor in response to the status notification, and modify power operation of the device in response to the high level state command. In another embodiment, a method for charging a power source includes obtaining, by a PMU of a device, operational characteristics of a power supply in communication with the device; determining a power supply type based at least in part upon the operational characteristics; and controlling charging of the power source based at least in part upon the power supply type.