Abstract:
Some embodiments include an apparatus which has a wordline coupled with a transistor gate, and which has a compensator line extending along the wordline and spaced from the wordline by a dielectric region. A driver is coupled with the wordline, and a controller is coupled with the compensator line. The wordline is coupled with access transistors, and is operated at a first voltage while the access transistors are in an OFF state. The compensator line is operated at a second voltage while the wordline is at the first voltage; with the second voltage being greater than the first voltage. The wordline is operated at a third voltage while the access transistors are in an ON state, and the compensator line is operated at a fourth voltage while the wordline is at the third voltage. The third voltage may or may not be greater than the fourth voltage.
Abstract:
Some embodiments include apparatuses, and methods of operating the apparatuses. Some of the apparatuses include a first group of conductive materials interleaved with a first group of dielectric materials, a first pillar extending through the first group of conductive materials and the first group of dielectric materials, memory cells located along the first pillar, a conductive contact coupled to one of the conductive materials, and a second pillar extending through a second group of conductive materials and a second group of dielectric materials. The second pillar includes a first portion coupled to a conductive region, a second portion, and a third portion, and a fourth portion coupled to the conductive contact. The second portion is located between the first and third portions. The second portion has a doping concentration less than a doping concentration of each of the first and fourth portions.
Abstract:
Some embodiments include apparatuses and methods using first and second select gates coupled in series between a conductive line and a first memory cell string of a memory device, and third and fourth select gates coupled in series between the conductive line and a second memory cell string of the memory device. The memory device can include first, second, third, and fourth select lines to provide first, second, third, and fourth voltages, respectively, to the first, second, third, and fourth select gates, respectively, during an operation of the memory device. The first and second voltages can have a same value. The third and fourth voltages can have different values.
Abstract:
Memory devices are shown that include a body region and a connecting region that is formed from a semiconductor with a lower band gap than the body region. Connecting region configurations can provide increased gate induced drain leakage during an erase operation. Configurations shown can provide a reliable bias to a body region for memory operations such as erasing, and containment of charge in the body region during a boost operation.
Abstract:
An electronic component of integrated circuitry comprises a substrate comprising at least two terminals. Material of one of the terminals has an upper surface. A conductive via extends elevationally into the material of the one terminal. The conductive via extends laterally into the material of the one terminal under the upper surface of the one terminal. Material of the one terminal is above at least some of the laterally extending conductive via. Other embodiments, including method embodiments, are disclosed.
Abstract:
Memory devices are shown that include a body region and a connecting region that is formed from a semiconductor with a lower band gap than the body region. Connecting region configurations can provide increased gate induced drain leakage during an erase operation. Configurations shown can provide a reliable bias to a body region for memory operations such as erasing, and containment of charge in the body region during a boost operation.
Abstract:
Methods for forming a string of memory cells, an apparatus having a string of memory cells, and a system are disclosed. A method for forming the string of memory cells comprises forming a metal silicide source material over a substrate. The metal silicide source material is doped. A vertical string of memory cells is formed over the metal silicide source material. A semiconductor material is formed vertically and adjacent to the vertical string of memory cells and coupled to the metal silicide source material.
Abstract:
An embodiment of a method includes decreasing a difference of a voltage applied to a first select gate minus a voltage applied to a source while the first select gate is off, decreasing a difference of a voltage applied to a second select gate minus a voltage applied to a data line while the second select gate is off, and increasing a voltage of a signal applied to a selected access line that is coupled to an untargeted memory cell in a string of memory cells coupled to the first and second select gates to a program voltage after or substantially concurrently with decreasing the difference of the voltage applied to the first select gate minus the voltage applied to the source and with decreasing the difference of the voltage applied to the second select gate minus the voltage applied to the data line.
Abstract:
Some embodiments include methods of forming transistors. Recesses are formed to extend into semiconductor material. The recesses have upper regions lined with liner material and have segments of semiconductor material exposed along lower regions. Semiconductor material is isotropically etched through the exposed segments which transforms the recesses into openings having wide lower regions beneath narrow upper regions. Gate dielectric material is formed along sidewalls of the openings. Gate material is formed within the openings and over regions of the semiconductor material between the openings. Insulative material is formed down the center of each opening and entirely through the gate material. A segment of gate material extends from one of the openings to the other, and wraps around a pillar of the semiconductor material between the openings. The segment is a gate of a transistor. Source/drain regions are formed on opposing sides of the gate.
Abstract:
Some embodiments include transistor-containing constructions having gate material within an opening in a semiconductor material and spaced from the semiconductor material by gate dielectric material. The opening has a wide lower region beneath a narrow upper region. A saddle region of the gate dielectric material extends outwardly from a bottom of the opening and is along the semiconductor material beneath the opening. A saddle region of the gate material extends outwardly from the bottom of the opening and is along the gate dielectric material beneath the opening. Source/drain regions are within the semiconductor material along sides of the gate material. Some embodiments include memory arrays.