摘要:
This invention provides a means for modifying surface properties of a cell culture substrate under specific conditions, to thereby regulate regions to which cells are allowed to adhere or are not allowed to adhere, depending on cell type. This invention relates to a method of cell culture comprising steps of: applying a positive potential to a conductive region of a substrate comprising a base material having a conductive region and a non-cell-adhesive membrane coupled thereto with the aid of silane, so as to separate the non-cell-adhesive membrane from the substrate; and culturing cells in a region from which the non-cell-adhesive membrane has been separated.
摘要:
Provided herein are a culture apparatus, culture systems and an alternating ionic magnetic resonance electromagnetic chamber for culturing cells, tissues or organoid bodies or for delivering a pulsating alternating ionic magnetic resonance field to an object of interest including the above or to an animal, human or plant. The culture apparatus comprises a culture unit having growth and nutrient modules and a randomizing adapter to continually randomize the gravity vector in the growth module. The culture systems further comprise the alternating ionic magnetic resonance electromagnetic chamber.
摘要:
The present invention relates to a method for differentiation of mesenchymal stem cells. More specifically, the invention relates to a method for differentiating mesenchymal stem cells to neural cells by treating the mesenchymal stem cells with low-frequency sound waves. The differentiation method of the present invention can induce differentiation even with low-cost media rather than induced neural differentiation mediums which are expensive due to addition of growth factors, and the neural cells differentiated according to the present invention may be useful for treatment of neurological diseases.
摘要:
The present invention relates to a method for differentiation of mesenchymal stem cells or dental pulp stem cells. More specifically, the invention relates to a method for differentiating stem cells to neural cells by applying mesenchymal stem cells or dental pulp stem cells with a low-frequency electromagnetic field. The differentiation method according to the present invention can induce differentiation even with low-cost mediums rather than induced neural differentiation mediums which are expensive due to addition of growth factors, and the neural cells differentiated according to the present invention may be useful for treatment of neurological brain diseases.
摘要:
A method for directing, enhancing, and accelerating mesenchymal stem cell functions using alternating electric current. Mesenchymal stem cells are preferentially directed to either osteoblast or chondrocyte lineages, but not to the adipocyte lineage. when exposed to alternating electric current.
摘要:
Provided is an electroactive structure and method for growing isolated differentiable cells comprising a three dimensional matrix of fibers formed of a biocompatible synthetic piezoelectric polymeric material, wherein the matrix of fibers is seeded with the isolated differentiable cells and forms a supporting scaffold for growing the isolated differentiable cells, and wherein the matrix of fibers stimulates differentiation of the isolated differentiable cells into a mature cell phenotype on the structure.
摘要:
The present invention provides new methods for the in vitro preparation of bioartificial tissue equivalents and their enhanced integration after implantation in vivo. These methods include submitting a tissue construct to a biomimetic electrical stimulation during cultivation in vitro to improve its structural and functional properties, and/or in vivo, after implantation of the construct, to enhance its integration with host tissue and increase cell survival and functionality. The inventive methods are particularly useful for the production of bioartificial equivalents and/or the repair and replacement of native tissues that contain electrically excitable cells and are subject to electrical stimulation in vivo, such as, for example, cardiac muscle tissue, striated skeletal muscle tissue, smooth muscle tissue, bone, vasculature, and nerve tissue.
摘要:
A new means of separately arranging individual animal cells on a substrate surface is provided. A method for preparing a substrate for arranging animal cells in an array, comprising steps (1) to (3): (1) preparing a substrate having adsorption surfaces in an array on an electrode substrate surface; (2) causing an extracellular matrix to adsorb to the electrode surface and the adsorption surfaces of the substrate; and (3) applying a weak potential to the electrode to cause the extracellular matrix on the electrode surface to separate to obtain a substrate with the extracellular matrix adhered to the adsorption surfaces thereof. A method for preparing a substrate on which animal cells have been arranged in an array, comprising steps (1) to (4): (1) preparing a substrate having adsorption surfaces in an array on an electrode substrate surface; (2) causing an extracellular matrix to adsorb to the electrode surface and the adsorption surfaces of the substrate; (3) applying a weak potential to the electrode to cause the extracellular matrix on the electrode surface to separate to obtain a substrate with extracellular matrix adhered to the adsorption surfaces thereof; and (4) culturing the animal cells on the surface of the substrate obtained in (3) to obtain a substrate on which the animal cells have adhered to the adsorption surface.
摘要:
A material comprising positively and negatively charged nanoparticles, wherein one of said nanoparticles contained a magnetically responsive element, are combined with a support molecule, which is a long natural or synthetic molecule or polymer to make a magnetic nanoparticle assembly. When the magnetic nanoparticle assembly is combined with cells, it will magnetize those cells. The magnetized cells can then be washed to remove the magnetic nanoparticle assembly and the magnetized cells manipulated in a magnetic field.
摘要:
A method and apparatus converts host cells of a first type into cells of a second type when the host cells are placed in intimate contact with donor cells of the second type. Under predetermined conditions there is transport of a sufficient number of mRNA molecules from the donor cells into the host cells to reprogram the host cells into the second type. The host and donor cells may be subjected to while in intimate contact to a transporting force that enables the mRNA molecules of the donor cells to penetrate an outer membrane wall of host cells without damaging the membrane wall. The transporting force may include an electric field, a magnetic field, or a combined electric field and magnetic field.