Abstract:
Various embodiments include large cores fibers that can propagate few modes or a single mode while introducing loss to higher order modes. Some of these fibers are holey fibers that comprising cladding features such as air-holes. Additional embodiments described herein include holey rods. The rods and fibers may be used in many optical systems including optical amplification systems, lasers, short pulse generators, Q-switched lasers, etc. and may be used for example for micromachining.
Abstract:
Frequency standards based on mode-locked fiber lasers, fiber amplifiers and fiber-based ultra-broad bandwidth light sources, and applications of the same.
Abstract:
The described embodiments provide an energy storage device that includes a positive electrode including an active material that can store and release ions, a negative electrode including an active material that is a lithiated nano-architectured active material including tin and at least one stress-buffer component, and a non-aqueous electrolyte including lithium. The negative electrode active material is nano-architectured before lithiation.
Abstract:
Systems and methods for providing laser texturing of solid substrates are disclosed. The texturing may be used to provide grayscale images obtainable from substrates, which may include steel, aluminum, glass, and silicon. In some embodiments, images may be obtainable from the substrate by modifying the reflective, diffractive, and/or absorptive features of the substrate or the substrate surface by forming random, periodic, and/or semi-periodic micro-structure features on the substrate (or substrate surface) by an ultrafast laser pulse train. The ultrafast pulse train may be modulated in order to vary, for example, optical exposure time, pulse train intensity, laser polarization, laser wavelength, or a combination of the aforementioned. The ultrafast pulse train and the substrate may be scanned with respect to each other to provide different optical energies to different regions of the substrate (or substrate surface). In some embodiments, the image is provided by making one or more passes of the ultrafast laser pulse train relative to the substrate.
Abstract:
A modular, compact and widely tunable laser system for the efficient generation of high peak and high average power ultrashort pulses. Peak power handling capability of fiber amplifiers is expanded by using optimized pulse shapes, as well as dispersively broadened pulses. Dispersive pulse stretching in the presence of self-phase modulation and gain results in the formation of high-power parabolic pulses. To ensure a wide tunability of the whole system, Raman-shifting of the compact sources of ultrashort pulses in conjunction with frequency-conversion in nonlinear optical crystals can be implemented, or an Anti-Stokes fiber in conjunction with fiber amplifiers and Raman-shifters are used. Positive dispersion optical amplifiers are used to improve transmission characteristics. An optical communication system utilizes a Raman amplifier fiber pumped by a train of Raman-shifted, wavelength-tunable pump pulses, to thereby amplify an optical signal which counterpropagates within the Raman amplifier fiber with respect to the pump pulses.
Abstract:
A p-type semiconductor zinc oxide (ZnO) film and a process for preparing the film are disclosed. The film is co-doped with phosphorous (P) and lithium (Li). A pulsed laser deposition scheme is described for use in growing the film. Further described is a process of pulsed laser deposition using transparent substrates which includes a pulsed laser source, a substrate that is transparent at the wavelength of the pulsed laser, and a multi-target system. The optical path of the pulsed laser is arranged in such a way that the pulsed laser is incident from the back of the substrate, passes through the substrate, and then focuses on the target. By translating the substrate towards the target, this geometric arrangement enables deposition of small features utilizing the root of the ablation plume, which can exist in a one-dimensional transition stage along the target surface normal, before the angular width of the plume is broadened by three-dimensional adiabatic expansion. This can provide small deposition feature sizes, which can be similar in size to the laser focal spot, and provides a novel method for direct deposition of patterned materials.
Abstract:
Methods for ultrashort pulse laser processing of optically transparent materials. A method for scribing transparent materials uses ultrashort laser pulses to create multiple scribe features with a single pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. This enables clean breaking of transparent materials at a higher speed than conventional techniques. Slightly modifying the ultrashort pulse laser processing conditions produces sub-surface marks. When properly arranged, these marks are clearly visible with side-illumination and not clearly visible without side-illumination. In addition, a method for welding transparent materials uses ultrashort laser pulses to create a bond through localized heating. The ultrashort pulse duration causes nonlinear absorption of the laser radiation, and the high repetition rate of the laser causes pulse-to-pulse accumulation of heat within the materials. The laser is focused near the interface of the materials, generating a high energy fluence at the region to be welded. This minimizes damage to the rest of the material and enables fine weld lines.
Abstract:
Modelocked fiber laser resonators may be coupled with optical amplifiers. An isolator optionally may separate the resonator from the amplifier. A reflective optical element on one end of the resonator having a relatively low reflectivity may be employed to couple light from the resonator to the amplifier. Enhanced pulse-width control may be provided with concatenated sections of both polarization-maintaining and non-polarization-maintaining fibers. Apodized fiber Bragg gratings and integrated fiber polarizers may also be included in the laser cavity to assist in linearly polarizing the output of the cavity. Very short pulses with a large optical bandwidth may be obtained by matching the dispersion value of the grating to the inverse of the dispersion of the intra-cavity fiber. Frequency comb sources may be constructed from such modelocked fiber oscillators. Low dispersion and an in-line interferometer that provides feedback may assist in controlling the frequency components output from the comb source.
Abstract:
Various embodiments include photonic bandgap fibers (PBGF). Some PBGF embodiments have a hollow core (HC) and may have a square lattice (SQL). In various embodiments, SQL PBGF can have a cladding region including 2-10 layers of air-holes. In various embodiments, an HC SQL PBGF can be configured to provide a relative wavelength transmission window Δλ/λc larger than about 0.35 and a minimum transmission loss in a range from about 70 dB/km to about 0.1 dB/km. In some embodiments, the HC SQL PBGF can be a polarization maintaining fiber. Methods of fabricating PBGF are also disclosed along with some examples of fabricated fibers. Various applications of PBGF are also described.
Abstract:
The present invention relates to frequency rulers. At least one embodiment includes a mode locked pump source operated at pulse repetition rate, and a pump output having a pump carrier envelope offset frequency. A nonlinear optical system outputs a frequency ruler spectrum comprising individual frequency modes. The frequency modes may be characterized by a frequency spacing which is an integer multiple of the repetition rate and by distinct ruler carrier envelope offset frequencies which exhibit at least one discontinuity across the frequency output. The ruler carrier envelope offset frequencies are substantially locked to the carrier envelope offset frequency of the pump laser. One preferred embodiment includes a frequency doubled, doubly resonant, non-degenerate OPO (DNOPO), a supercontinuum generation (SC) stage and at least one reference laser arranged downstream from a Tm fiber-based pump source. A plurality of beat signals generated therefrom provide for stabilization of the system.