Abstract:
A resistive random access memory array may be formed on the same substrate with a fuse array. The random access memory and the fuse array may use the same active material. For example, both the fuse array and the memory array may use a chalcogenide material as the active switching material. The main array may use a pattern of perpendicular sets of trench isolations and the fuse array may only use one set of parallel trench isolations. As a result, the fuse array may have a conductive line extending continuously between adjacent trench isolations. In some embodiments, this continuous line may reduce the resistance of the conductive path through the fuses.
Abstract:
Some embodiments include memory constructions having a plurality of bands between top and bottom electrically conductive materials. The bands include chalcogenide bands alternating with non-chalcogenide bands. In some embodiments, there may be least two of the chalcogenide bands and at least one of the non-chalcogenide bands. In some embodiments, the memory cells may be between a pair of electrodes; with one of the electrodes being configured as a lance, angled plate, container or beam. In some embodiments, the memory cells may be electrically coupled with select devices, such as, for example, diodes, field effect transistors or bipolar junction transistors.
Abstract:
A Zinc Oxide (ZnO) layer deposited using Atomic Layer Deposition (ALD) over a phase-change material forms a self-selected storage device. The diode formed at the ZnO/GST interface shows both rectification and storage capabilities within the PCM architecture.
Abstract:
A vertical MOSFET transistor is formed in a body of semiconductor material having a surface. The transistor includes a buried conductive region of a first conductivity type; a channel region of a second conductivity type, arranged on top of the buried conductive region; a surface conductive region of the first conductivity type, arranged on top of the channel region and the buried conductive region; a gate insulation region, extending at the sides of and contiguous to the channel region; and a gate region extending at the sides of and contiguous to the gate insulation region.
Abstract:
Methods, systems, and devices for techniques for forming self-aligned memory structures are described. Aspects include etching a layered assembly of materials including a first conductive material and a first sacrificial material to form a first set of channels along a first direction that creates a first set of sections. An insulative material may be deposited within each of the first set of channels and a second sacrificial material may be deposited onto the first set of sections and the insulating material. A second set of channels may be etched into the layered assembly of materials along a second direction that creates a second set of sections, where the second set of channels extend through the first and second sacrificial materials. Insulating material may be deposited in the second set of channels and the sacrificial materials removed leaving a cavity. A memory material may be deposited in the cavity.
Abstract:
Methods, systems, and devices related to 3D self-selecting-memory array of memory cells are described. The method relates to a solution for improving the fault-tolerant capability of memory devices, including: applying a triple-modular-redundancy calculation in a programming phase of the memory cells of a memory array, and adopting a sequence of two opposite dual polarity algorithms applied along a selected bit line and in parallel on the at least three selected word lines of the memory array.
Abstract:
Methods, systems, and devices for techniques for operating a vertical memory architecture are described. A memory device may include memory cells arranged in a three-dimensional vertical memory architecture. Each memory cell may include a storage element (e.g., a chalcogenide material), where a logic state may be programmed at the storage element based on a polarity of an applied voltage that exceeds a threshold voltage. The storage element may be coupled with a selection element and a conductive line. The selection element may be coupled with a bit line decoder and a word line decoder via vertical pillars. The selection element may selectively couple the storage element with the bit line decoder. In some examples, an activation voltage for the selection element may be less than a threshold voltage of the storage element.
Abstract:
Methods, systems, and devices for cross point array architecture for multiple decks are described. A memory array may include multiple decks, such as six or eight decks. The memory array may also include sockets for coupling access lines with associated decoders. The sockets may be included in sub-blocks of the array. A sub-block may be configured to include sockets for multiple access lines. A socket may intersect an access line in the middle of the access line, or at an end of the access line. Sub-blocks containing sockets for an access line may be separated by a period based on the access line.
Abstract:
Apparatuses, methods, and systems for using a subthreshold voltage for mapping in memory are disclosed. An example apparatus includes a memory array including a plurality of memory cells each programmable to a first data state or a second data state, and circuitry coupled to the memory array and configured to encode an input vector comprising a first number of data states to be programmed to a first group of memory cells of a memory array, apply a subthreshold voltage to each of a second group of memory cells of the memory array, wherein the second group of memory cells is programmed to a weight vector comprising a second number of data states and wherein the subthreshold voltage is based upon the data states of the input vector, and map the input vector to a location in the memory array using the weight vector after applying the subthreshold voltage.
Abstract:
Methods, systems, and devices for reading a multi-level memory cell are described. The memory cell may be configured to store three or more logic states. The memory device may apply a first read voltage to a memory cell to determine a logic state stored by the memory cell. The memory device may determine whether a first snapback event occurred and apply a second read voltage based on determining that the first snapback event failed to occur based on applying the first read voltage. The memory device may determine whether a second snapback event occurred and determine the logic state based on whether the first snapback event or the second snapback event occurred.