Abstract:
In a method of manufacturing a semiconductor device including a non-volatile memory formed in a memory cell area and a logic circuit formed in a peripheral area, a mask layer is formed over a substrate in the memory cell area and the peripheral area. A resist mask is formed over the peripheral area. The mask layer in the memory cell area is patterned by using the resist mask as an etching mask. The substrate is etched in the memory cell area. After etching the substrate, a memory cell structure in the memory cell area and a gate structure for the logic circuit are formed. A dielectric layer is formed to cover the memory cell structure and the gate structure. A planarization operation is performed on the dielectric layer. An upper portion of the memory cell structure is planarized during the planarization operation.
Abstract:
The present disclosure relates to an integrated circuit (IC) that includes a HKMG hybrid non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a memory region having a NVM device with a pair of control gate electrodes separated from a substrate by corresponding floating gates. A pair of select gate electrodes are disposed at opposite sides of the pair of control gate electrodes. A logic region is disposed adjacent to the memory region and has a logic device with a metal gate electrode disposed over a logic gate dielectric and having bottom and sidewall surfaces covered by a high-k gate dielectric layer. The select gate electrodes or the control gate electrodes comprise metal and have bottom and sidewall surfaces covered by the high-k gate dielectric layer.
Abstract:
The present disclosure relates to an integrated circuit (IC) that includes a HKMG hybrid non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a memory region having a NVM device with a pair of control gate electrodes separated from a substrate by corresponding floating gates. A pair of select gate electrodes are disposed at opposite sides of the pair of control gate electrodes. A logic region is disposed adjacent to the memory region and has a logic device with a metal gate electrode disposed over a logic gate dielectric and having bottom and sidewall surfaces covered by a high-k gate dielectric layer. The select gate electrodes or the control gate electrodes comprise metal and have bottom and sidewall surfaces covered by the high-k gate dielectric layer.
Abstract:
The present disclosure relates to an integrated circuit (IC) that includes a high-k metal gate (HKMG) non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a logic region having a logic device disposed over a substrate and including a first metal gate disposed over a first high-k gate dielectric layer and an embedded memory region disposed adjacent to the logic region. The embedded memory region has a split gate flash memory cell including a select gate and a control gate. The control gate or the select gate is a metal gate separated from the substrate by a second high-k gate dielectric layer. By having HKMG structures in both the logic region and the memory region, IC performance is improved and further scaling becomes possible in emerging technology nodes.
Abstract:
The present disclosure relates to an integrated circuit (IC) that includes a high-k metal gate (HKMG) non-volatile memory (NVM) device and that provides small scale and high performance, and a method of formation. In some embodiments, the integrated circuit includes a logic region having a logic device disposed over a substrate and including a first metal gate electrode disposed over a first high-k gate dielectric layer and an embedded memory region disposed adjacent to the logic region. The embedded memory region has a non-volatile memory (NVM) device including a second metal gate electrode disposed over the high-k gate dielectric layer. By having HKMG structures in both the logic region and the memory region, IC performance is improved and further scaling becomes possible in emerging technology nodes.
Abstract:
An integrated circuit (IC) using high-κ metal gate (HKMG) technology with an embedded metal-oxide-nitride-oxide-silicon (MONOS) memory cell is provided. A logic device is arranged on a semiconductor substrate and comprises a logic gate. A memory cell is arranged on the semiconductor substrate and comprises a control transistor and a select transistor laterally adjacent to one another. The control and select transistors respectively comprise a control gate and a select gate, and the control transistor further comprises a charge trapping layer underlying the control gate. The logic gate and one or both of the control and select gates are metal and arranged within respective high κ dielectric layers. A high-κ-last method for manufacturing the IC is also provided.
Abstract:
The present disclosure relates to a structure and method for embedding a non-volatile memory (NVM) in a HKMG (high-κ metal gate) integrated circuit which includes a high-voltage (HV) HKMG transistor. NVM devices (e.g., flash memory) are operated at high voltages for its read and write operations and hence a HV device is necessary for integrated circuits involving non-volatile embedded memory and HKMG logic circuits. Forming a HV HKMG circuit along with the HKMG periphery circuit reduces the need for additional boundaries between the HV transistor and rest of the periphery circuit. This method further helps reduce divot issue and reduce cell size.
Abstract:
An integrated circuit (IC) using high-κ metal gate (HKMG) technology with an embedded silicon-oxide-nitride-oxide-silicon (SONOS) memory cell is provided. A logic device is arranged on a semiconductor substrate and comprises a logic gate. The logic gate is arranged within a high κ dielectric layer. A memory cell is arranged on the semiconductor substrate and comprises a control transistor and a select transistor laterally adjacent to one another. The control and select transistors respectively comprise a control gate and a select gate. The control transistor further comprises a charge trapping layer underlying the control gate. The control and select gates are a first material, and the logic gate is a second material. A high-κ-last method for manufacturing the IC is also provided.
Abstract:
The present disclosure relates to an integrated circuit (IC). The IC includes a substrate, which includes a periphery region having a first substrate surface and a memory cell region having a second substrate surface. The second substrate surface is recessed within the substrate relative to the first substrate surface. A high k metal gate (HKMG) transistor is disposed on the first substrate surface and includes a HKMG gate. Two neighboring flash memory cells are disposed on the second substrate surface and include a pair of flash memory cell control gates. Top surfaces of the HKMG gate and flash memory cell control gates are co-planar.
Abstract:
Some embodiments of the present disclosure relate to a method. In this method, a semiconductor substrate, which has an active region disposed in the semiconductor substrate, is received. A shallow trench isolation (STI) structure is formed to laterally surround the active region. An upper surface of the active region bounded by the STI structure is recessed to below an upper surface of the STI structure. The recessed upper surface extends continuously between inner sidewalls of the STI structure and leaves upper portions of the inner sidewalls of the STI structure exposed. A semiconductor layer is epitaxially grown on the recessed surface of the active region between the inner sidewalls of the STI structure. A gate dielectric is formed over the epitaxially-grown semiconductor layer. A conductive gate electrode is formed over the gate dielectric.