Abstract:
In accordance with the invention, a trench MOSFET semiconductor device is manufactured in accordance with a process comprising the steps of: providing a heavily doped N+ silicon substrate; utilizing a first mask to define openings for the trench gate and termination; utilizing a second mask as a source mask with openings determining the size and shape of a diffused source junction depth; utilizing a third mask as a contact mask to define contact hole openings; and utilizing a fourth mask as a metal mask, whereby only the first, second, third and fourth masks are utilized in the manufacture of the trench MOSFET semiconductor device.
Abstract:
One embodiment of the present invention provides a system that computes dummy feature density for a CMP (Chemical-Mechanical Polishing) process. Note that the dummy feature density is used to add dummy features to a layout to reduce the post-CMP topography variation. During operation, the system discretizes a layout of an integrated circuit into a plurality of panels. Next, the system computes a feature density and a slack density for the plurality of panels. The system then computes a dummy feature density for the plurality of panels by, iteratively, (a) calculating an effective feature density for the plurality of panels using the feature density and a function that models the CMP process, (b) calculating a filling amount for a set of panels in the plurality of panels using a target feature density, the effective feature density, and the slack density, and (c) updating the feature density, the slack density, and the dummy feature density for the set of panels using the filling amount. In one embodiment of the present invention, the iterative process is guided by a variance-minimizing heuristic to efficiently select the set of panels and assign/remove dummy density to the set of panels to decrease the effective feature density variation.
Abstract:
Exemplary embodiments provide semiconductor devices including high-quality (i.e., defect free) group III-N nanowires and uniform group III-N nanowire arrays as well as their scalable processes for manufacturing, where the position, orientation, cross-sectional features, length and the crystallinity of each nanowire can be precisely controlled. A pulsed growth mode can be used to fabricate the disclosed group III-N nanowires and/or nanowire arrays providing a uniform length of about 10 nm to about 1000 microns with constant cross-sectional features including an exemplary diameter of about 10-1000 nm. In addition, high-quality GaN substrate structures can be formed by coalescing the plurality of GaN nanowires and/or nanowire arrays to facilitate the fabrication of visible LEDs and lasers. Furthermore, core-shell nanowire/MQW active structures can be formed by a core-shell growth on the nonpolar sidewalls of each nanowire.
Abstract:
A video analysis technique includes correlating frames from a processed video with frames from a pre-processed, original video. A linear approximation of a relationship between the correlated frames is determined. A disclosed example includes determining a linear approximation that maximizes the number of processed video frames that fit into the linear approximation. The linear approximation and whether any frames do not fit within the linear approximation is then used to provide quality information for analyzing a quality of the processed video.
Abstract:
One embodiment of the present invention provides a system that computes dummy feature density for a CMP (Chemical-Mechanical Polishing) process. Note that the dummy feature density is used to add dummy features to a layout to reduce the post-CMP topography variation. During operation, the system discretizes a layout of an integrated circuit into a plurality of panels. Next, the system computes a feature density and a slack density for the plurality of panels. The system then computes a dummy feature density for the plurality of panels by, iteratively, (a) calculating an effective feature density for the plurality of panels using the feature density and a function that models the CMP process, (b) calculating a filling amount for a set of panels in the plurality of panels using a target feature density, the effective feature density, and the slack density, and (c) updating the feature density, the slack density, and the dummy feature density for the set of panels using the filling amount. In one embodiment of the present invention, the iterative process is guided by a variance-minimizing heuristic to efficiently select the set of panels and assign/remove dummy density to the set of panels to decrease the effective feature density variation.
Abstract:
An infrared ray generator controlled by photoelectric finger pulse sensor comprises a carrier circuit, a photoelectric signal generating circuit, a photoelectric finger pulse signal receiving circuit, a signal anti-disturbing circuit, a carrier amplification circuit, a detecting and filtering circuit, a low pass amplifying circuit, an intelligent processing circuit, a voltage regulation circuit for triggering and controlling infrared ray lamp, and a power supply circuit for the infrared ray generator.
Abstract:
An assembly determines an analyte concentration in a sample of body fluid. The assembly includes a test sensor having a fluid-receiving area for receiving a sample of body fluid, where the fluid-receiving area contains a reagent that produces a measurable reaction with an analyte in the sample. The assembly also includes a meter having a port or opening configured to receive the test sensor; a measurement system configured to determine a measurement of the reaction between the reagent and the analyte; and a temperature-measuring system configured to determine a measurement of the test-sensor temperature when the test sensor is received into the opening. The meter determines a concentration of the analyte in the sample according to the measurement of the reaction and the measurement of the test-sensor temperature.
Abstract:
In accordance with the invention, a trench MOSFET semiconductor device is manufactured in accordance with a process comprising the steps of: providing a heavily doped N+ silicon substrate; utilizing a first mask to define openings for the trench gate and termination; utilizing a second mask as a source mask with openings determining the size and shape of a diffused source junction depth; utilizing a third mask as a contact mask to define contact hole openings; and utilizing a fourth mask as a metal mask, whereby only the first, second, third and fourth masks are utilized in the manufacture of the trench MOSFET semiconductor device.
Abstract:
The present invention provides a method for fabricating semiconductor device, which is capable of adjusting a gate oxide layer thickness, including: providing a semiconductor substrate; growing a first oxide layer on a surface of the semiconductor substrate; patterning the first oxide layer to expose the first oxide layer corresponding to a gate to be formed; removing the exposed first oxide layer; immersing the substrate into deionized water to grow a second oxide layer; forming a polysilicon layer on the surfaces of the first oxide layer and the second oxide layer; and etching the polysilicon layer to form a gate. The method for fabricating semiconductor device according to the present invention, which is capable of adjusting the thickness of gate oxide layer, can control the thickness of gate oxide layer precisely to satisfy the requirement for different threshold voltages.
Abstract:
A user-manipulated door mechanism is mounted on the faceplate of an electronic module for allowing user access to an electrical socket disposed inboard of a faceplate aperture. An inwardly extending rectangular shoulder formed along one edge of the door is rotatably mounted about an axis inboard of the faceplate, and is resiliently engaged by the free end of a cantilevered spring blade inboard of the faceplate. The spring blade engages a first face of the shoulder that is substantially parallel to the door when the door is in a closed position covering the socket, and a second face of the shoulder that is substantially perpendicular to the door when the door is in an open position uncovering the socket.