Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, illumination is directed to the medium and corresponding radiation from the medium is collected. Spectral energy changes associated with fragment(s)/feature(s) obtained from the collected radiation are determined using collision computing. Such spectral energy changes generally represent analyte concentration. The illumination is controlled to target a particular volume of the medium and/or such that the spectral energy changes become directionally monotonic with respect to analyte concentration. The illumination parameters include: intensity, wavelength, bandwidth, focal length, and/or duration of illumination, location and/or a size of an illuminated spot on the medium surface, depth at which the illumination can reach below the medium surface, spacing between the illuminated spot and a spot on the medium surface from which radiation is collected, and angle of the illumination relative to the medium surface.
Abstract:
A gas analyzing apparatus includes a gas analyzing unit, a luminescence inducing component generating unit, and a measurement signal calculating unit. The gas analyzing unit receives a sample gas containing a component gas and/or a standard gas and the luminescence inducing gas. The gas analyzing unit is configured to output a detection signal based on an intensity of a reaction light generated by the interaction between the component gas and the luminescence inducing component. The luminescence inducing component generating unit generates the luminescence inducing gas by electric discharge generated repeatedly at specified intervals. The measurement signal calculating unit calculates a first measurement signal based on a first detection signal, based on the reaction light generated when the sample gas and the luminescence inducing gas are introduced, and a second detection signal, based on the reaction light generated when the standard gas and the luminescence inducing gas are introduced.
Abstract:
In a noninvasive system for detection/measurement of glucose and other analytes in a medium such as tissue, spectra from the medium are deconstructed into features. Conditioned features, which contain frequency components specific to glucose or the other analytes, are derived from one or more features by modulating a carrier kernel with the feature. The conditioned features are computationally collided with one or more Zyotons that are co-dependent with the conditioned features. One or more collisions amplify a property of the analyte e.g., energy absorbed by glucose in tissue from radiation directed to the skin. A gradient of several values of the amplified property, each value corresponding to a particular radiation pattern according to a spectroscopic tomographic sequence, is used to select a suitable projector curve, with which a representative amplified value is projected to an accurate estimate of the concentration of glucose or the other analytes, without needing personalized calibration.
Abstract:
A method and system for determination of contaminants, such as black powder, in a flowing fluid, such as natural gas, is disclosed. The method comprises transmitting a plurality of light beams over a spectrum of wavelengths through the flowing fluid in a main pipeline and receiving a plurality of measurements relating to transmitted and scattered light beams over the spectrum of wavelengths. The measurements relate to at least one of absorption, reflection or refraction. The received plurality of measurements are compared with a plurality of stored patterns and a result indicative of the determination of the contaminants is output.
Abstract:
Method for calibrating an infrared spectroscopy apparatus to produce spectra to determine the concentration of a component C1 in one fluid F1 of an animal, includes: a) obtaining samples of fluid F1 and of a different fluid from each animal belonging to a group of representative animals, fluid F2 containing detectable amounts of at least one component C2 which is directly or indirectly related to a metabolic pathway of component C1; b) measuring the concentration of component C1 in the samples of fluid F1; c) producing the complete IR absorption spectrum of the samples of fluid F2; d) identifying in the absorption spectra of fluid F2 samples the spectral ranges that correlate with the concentration of component C1 in fluid F1 samples; and e) calculating, on the basis of at least one of the correlating spectral ranges, a predictive mathematical model of the concentration of component C1 in fluid F1.
Abstract:
A method for analysing fluid characteristics of a geological sample with laser-induced breakdown spectral measurements performed on the geological sample, spectral pre-processing performed as necessary, and subsequent analysis is applied to the collected data to determine at least one fluid parameter of the sample. The method can provide a more rapid and reliable method to estimate fluid properties of a geological sample. A system for performing the method also is provided.
Abstract:
A physiological monitor for determining blood oxygen saturation of a medical patient includes a sensor, a signal processor and a display. The sensor includes at least three light emitting diodes. Each light emitting diode is adapted to emit light of a different wavelength. The sensor also includes a detector, where the detector is adapted to receive light from the three light emitting diodes after being attenuated by tissue. The detector generates an output signal based at least in part upon the received light. The signal processor determines blood oxygen saturation based at least upon the output signal, and the display provides an indication of the blood oxygen saturation.
Abstract:
A method for determining the moisture content of at least one resin layer provided on at least one wooden board as carrier board, wherein between the at least one resin layer and the carrier board an NIR reflecting layer is provided, including recording of at least one NIR spectrum of the at least one resin layer provided on the at least one carrier board using a NIR detector in a wavelength range between 500 nm an 2500 nm; determining the moisture content of the resin layer by comparing the NIR spectrum recorded for the resin layer to be measured with at least one NIR spectrum recorded for at least one reference sample with known moisture content by means of a multivariate data analysis, wherein the at least one NIR spectrum recorded was determined previously using the same NIR detector in a wavelength range between 500 nm and 2500 nm.
Abstract:
A portable system and method for analyzing biological tissue samples and detecting analytes associated with tissue oxygenation using a conformal filter. A conformal filter, which may comprise a tunable filter, is configured to filter interacted photons conforming to a spectral shape correlated with an analyte of interest. Conformal filter configurations may be selected by consulting a modified look-up table associated with an analyte. An iterative methodology may be used to calibrate a conformal design for an analyte of interest, refine a previous conformal filter design for an analyte of interest, and/or generate a new conformal filter design for an analyte of interest.