Abstract:
One method disclosed includes, among other things, conformably depositing a layer of contact insulating material and a conductive material layer in a contact opening, forming a reduced-thickness sacrificial material layer in the contact opening so as to expose a portion, but not all, of the conductive material layer, removing portions of the conductive material layer and the layer of contact insulating material positioned above the upper surface of the reduced-thickness sacrificial material layer, removing the reduced-thickness sacrificial material layer, and forming a conductive contact in the contact opening that contacts the recessed portions of the conductive material layer and the layer of contact insulating material.
Abstract:
One illustrative method disclosed herein includes, among other things, forming an inverted, generally T-shaped mandrel feature having a base mandrel structure and a substantially vertically oriented fin mandrel structure, the base mandrel structure having a lateral width that is greater than a lateral width of the fin mandrel structure, forming a sidewall spacer adjacent the sidewalls of the base mandrel structure and the fin mandrel structure, performing at least one etching process to remove portions of the inverted, generally T-shaped mandrel feature not covered by a sidewall spacer, wherein, after the etching process is completed, the sidewall spacers and remaining portions of the mandrel feature, collectively, define a fin pattern, and performing at least one additional process operation to form a plurality of fins in the substrate that correspond to the fin pattern.
Abstract:
An illustrative method includes forming a FinFET device above structure comprising a semiconductor substrate, a first epi semiconductor material and a second epi semiconductor material that includes forming an initial fin structure that comprises portions of the semiconductor substrate, the first epi material and the second epi material, recessing a layer of insulating material such that a portion, but not all, of the second epi material portion of the initial fin structure is exposed so as to define a final fin structure, forming a gate structure above and around the final fin structure, removing the first epi material of the initial fin structure and thereby define an under-fin cavity under the final fin structure and substantially filling the under-fin cavity with a stressed material.
Abstract:
A high performance GAA FET is described in which vertically stacked silicon nanowires carry substantially the same drive current as the fin in a conventional FinFET transistor, but at a lower operating voltage, and with greater reliability. One problem that occurs in existing nanowire GAA FETs is that, when a metal is used to form the wrap-around gate, a short circuit can develop between the source and drain regions and the metal gate portion that underlies the channel. The vertically stacked nanowire device described herein, however, avoids such short circuits by forming insulating barriers in contact with the source and drain regions, prior to forming the gate. Through the use of sacrificial films, the fabrication process is almost fully self-aligned, such that only one lithography mask layer is needed, which significantly reduces manufacturing costs.
Abstract:
Fin field effect transistor integrated circuits and methods for producing the same are provided. A fin field effect transistor integrated circuit includes a plurality of fins extending from a semiconductor substrate. Each of the plurality of fins includes a fin sidewall, and each of the plurality of fins extends to a fin height such that a trough with a trough base is defined between adjacent fins. A second dielectric is positioned within the trough, where the second dielectric directly contacts the semiconductor substrate at the trough base. The second dielectric extends to a second dielectric height less than the fin height such that protruding fin portions extend above the second dielectric. A first dielectric is positioned between the fin sidewall and the second dielectric.
Abstract:
Disclosed herein are various methods of forming isolation structures on FinFETs and other semiconductor devices, and the resulting devices that have such isolation structures. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate, wherein the trenches define a fin for a FinFET device, forming a layer of insulating material in the trenches, wherein the layer of insulating material covers a lower portion of the fin but not an upper portion of the fin, forming a protective material on the upper portion of the fin, and performing a heating process in an oxidizing ambient to form a thermal oxide region on the covered lower portion of the fin.
Abstract:
One method disclosed includes, forming a sacrificial gate structure trench in a stack of sacrificial material layers, forming a sacrificial gate structure within the trench, performing at least one process operation to remove at least portions of the stack of sacrificial material layers and thereby expose sidewalls of the sacrificial gate structure, forming a sidewall spacer adjacent the exposed sidewalls of the sacrificial gate structure, removing the sacrificial gate structure so as to define a replacement gate cavity between the spacers, forming a replacement gate structure in the replacement gate cavity, and forming a gate cap above the replacement gate structure within the replacement gate cavity.
Abstract:
One method disclosed includes, forming a sacrificial gate structure trench in a stack of sacrificial material layers, forming a sacrificial gate structure within the trench, performing at least one process operation to remove at least portions of the stack of sacrificial material layers and thereby expose sidewalls of the sacrificial gate structure, forming a sidewall spacer adjacent the exposed sidewalls of the sacrificial gate structure, removing the sacrificial gate structure so as to define a replacement gate cavity between the spacers, forming a replacement gate structure in the replacement gate cavity, and forming a gate cap above the replacement gate structure within the replacement gate cavity.
Abstract:
Integrated circuits and methods of forming integrated circuits are provided. An integrated circuit includes a gate electrode structure overlying a base substrate. The gate electrode structure includes a gate electrode, with a cap disposed over the gate electrode and sidewall spacers disposed adjacent to sidewalls of the gate electrode structure. A source and drain region are formed in the base substrate aligned with the gate electrode structure. A first dielectric layer is disposed adjacent to the sidewall spacers. The sidewall spacers and the cap have recessed surfaces below a top surface of the first dielectric layer, and a protecting layer is disposed over the recessed surfaces. A second dielectric layer is disposed over the first dielectric layer and the protecting layer. Electrical interconnects are disposed through the first dielectric layer and the second dielectric layer, and the electrical interconnects are in electrical communication with the respective source and drain regions.
Abstract:
Methods for fabricating FinFET integrated circuits with uniform fin height and ICs fabricated from such methods are provided. A method includes etching a substrate using an etch mask to form fins. A first oxide is formed between the fins. A first etch stop is deposited on the first oxide. A second oxide is formed on the first etch stop. A second etch stop is deposited on the second oxide. A third oxide is deposited overlying the second etch stop. An STI extends from at least a surface of the substrate to at least a surface of the second etch stop overlying the fins to form a first active region and a second active region. The first etch stop overlying the fins is removed. The third oxide is removed to expose the second etch stop. A gate stack is formed overlying a portion of each of the fins.