摘要:
A metal(hfac), alkene ligand precursor has been provided. The alkene ligand includes double bonded carbon atoms, with first and second bonds to the first carbon atom, and third and fourth bonds to the second carbon atom. The first, second, third, and fourth bonds are selected from a the group consisting of H, C.sub.1 to C.sub.8 alkyl, C.sub.1 to C.sub.8 haloalkyl, and C.sub.1 to C.sub.8 alkoxyl. As a general class, these precursors are capable of high metal deposition rates and high volatility, despite being stable in the liquid phase at low temperatures. Copper deposited with this precursor has low resistivity and high adhesive characteristics. A synthesis method has been provided which produces a high yield of the above-described alkene ligand class of metal precursors.
摘要:
A method of forming a semiconductor memory device on a silicon substrate includes implanting doping impurities of a first type in the silicon substrate to form a conductive channel of a first type for use as a gate junction region, forming a MOS capacitor on the conductive channel of the first type, depositing an FEM capacitor over the MOS capacitor, thereby forming a stacked gate unit, implanting doping impurities of a second type in the silicon substrate on either side of the gate junction region to form a conductive channel of a second type for use as a source junction region and a drain junction region, and depositing an insulating structure about the FEM gate unit. A ferroelectric memory (FEM) cell constructed according to the invention includes a silicon substrate, a gate region located in said substrate, a source junction region and a drain junction region located on either side of said gate region, a MOS capacitor, a FEM capacitor, wherein said FEM capacitor is stacked on and overlays at least a portion of said MOS capacitor, thereby forming, with said MOS capacitor, a stacked gate unit.
摘要:
A method of forming a direct, copper-to-copper, connection between levels in an IC is disclosed. A via interconnection is formed by isotropically depositing a barrier material in a via through an insulator to a lower copper level, and then anisotropically etching the via to remove the barrier material covering the lower copper level. The anisotropic etch leaves the barrier material lining the via through the insulator. The subsequently deposited upper metal level then directly contacts the lower copper level when the via is filled. A dual damascene interconnection is formed by etching an interconnection trench in an insulator and anisotropically depositing a non-conductive barrier material in the trench bottom. Then a via is formed from the trench interconnect to a lower copper level. As above, a conductive barrier material is isotropically deposited in the trench/via structure, and anisotropically etched to remove the barrier material covering the lower copper level. The insulating barrier material, lining the trench and via, remains. An IC via interconnection structure and a dual damascene interconnection structure, made in accordance with the above described methods, are also provided.
摘要:
A method of forming a MOS transistor without a lightly doped drain (LDD) region between the channel region and drain is provided. The channel region is formed from a tilted ion implantation after the deposition of the gate oxide layer. The tilted implantation forms a relatively short channel length, with respect to the length of the gate electrode. The position of the channel is offset, and directly adjoins the source. The non-channel area under the gate, adjacent the drain, replaces the LDD region between the channel and the drain. This drain extension acts to more evenly distribute electric fields so that large breakdown voltages are possible. The small channel length, and eliminated LDD region adjacent the source, act to reduce resistance between the source and drain. In this manner, larger I.sub.d currents and faster switching speeds are obtained. A MOS transistor having a short, offset channel and drain extension is also provided.
摘要:
A floating body germanium (Ge) phototransistor and associated fabrication process are presented. The method includes: providing a silicon (Si) substrate; selectively forming an insulator layer overlying the Si substrate; forming an epitaxial Ge layer overlying the insulator layer using a liquid phase epitaxy (LPE) process; forming a channel region in the Ge layer; forming a gate dielectric, gate electrode, and gate spacers overlying the channel region; and, forming source/drain regions in the Ge layer. The LPE process involves encapsulating the Ge with materials having a melting temperature greater than a first temperature, and melting the Ge using a temperature lower than the first temperature. The LPE process includes: forming a dielectric layer overlying deposited Ge; melting the Ge; and, in response to cooling the Ge, laterally propagating an epitaxial growth front into the Ge from an underlying Si substrate surface.
摘要:
An array of fully isolated multi-junction complimentary metal-oxide-semiconductor (CMOS) filterless color imager cells is provided, together with an associated fabrication method. The method provides a bulk silicon (Si) substrate. A plurality of color imager cells are formed, either in the Si substrate, or in a single epitaxial Si layer formed over the substrate. Each color imager cell includes a photodiode set with a first, second, and third photodiode formed as a stacked multi-junction structure. A U-shaped (in cross-section) well liner, fully isolates the photodiode set from adjacent photodiode sets in the array. For example, each photodiode is formed from a p doped Si layer physically interfaced to a first wall. A well bottom physically interfaces to the first wall, and the p doped Si layer of the third, bottom-most, photodiode is part of the well bottom. Then, the photodiode sets may be formed from an n/p/n/p/n/p or n/p/p−/p/p−/p layered structure.
摘要翻译:提供了完全隔离的多结互补金属氧化物半导体(CMOS)无滤膜彩色成像器单元的阵列,以及相关的制造方法。 该方法提供体硅(Si)衬底。 在Si衬底中或在衬底上形成的单个外延Si层中形成多个彩色成像器单元。 每个彩色成像器单元包括具有形成为堆叠多结结构的第一,第二和第三光电二极管。 U形(横截面)井衬管,将阵列中的光电二极管组与相邻的光电二极管组完全隔离。 例如,每个光电二极管由物理上与第一壁物理连接的p掺杂Si层形成。 阱底部与第一壁物理接口,第三,最底部的光电二极管的p掺杂Si层是阱底部的一部分。 然后,光电二极管组可以由n / p / n / p / n / p或n / p / p / p / p / p层叠结构形成。
摘要:
An optical device with an iridium oxide (IrOx) electrode neural interface, and a corresponding fabrication method are provided. The method provides a substrate and forms a first conductive electrode overlying the substrate. A photovoltaic device having a first electrical interface is connected to the first electrode. A second electrical interface of the photovoltaic device is connected to a second conductive electrode formed overlying the photovoltaic device. An array of neural interface single-crystal IrOx nanostructures are formed overlying the second electrode, where x≦4. The IrOx nanostructures can be partially coated with an electrical insulator, such as SiO2, SiN, TiO2, or spin on glass (SOG), leaving the IrOx distal ends exposed. In one aspect, a buffer layer is formed overlying the second electrode surface, made from a material such as LiNbO3, LiTaO3, or SA, for the purpose of orienting the growth direction of the IrOx nanostructures.
摘要:
An ambient environment nanowire sensor and corresponding fabrication method have been provided. The method includes: forming a substrate such as Silicon (Si) or glass; growing nanowires; depositing an insulator layer overlying the nanowires; etching to expose tips of the nanowires; forming a patterned metal electrode, with edges, overlying the tips of the nanowires; and, etching to expose the nanowires underlying the electrode edges. The nanowires can be a material such as IrO2, TiO2, InO, ZnO, SnO2, Sb2O3, or In2O3, to mane just a few examples. The insulator layer can be a spin-on glass (SOG) or low-k dielectric. In one aspect, the resultant structure includes exposed nanowires grown from the doped substrate regions and an insulator core with embedded nanowires. In a different aspect, the method forms a growth promotion layer overlying the substrate. The resultant structure includes exposed nanowires grown from the selectively formed growth promotion layer.
摘要:
A method of fabricating a stacked nanostructure array includes preparing a substrate; forming a bottom electrode directly on the substrate; growing a first nanostructure array directly on the bottom electrode; forming an insulating layer on the first nanostructure array; exposing the upper surface of the first nanostructure array; depositing a second, and subsequent, nanostructure array on a nanostructure array immediately below the second and subsequent nanostructure array; repeating said forming, said exposing and said depositing a subsequent steps to form a stacked nanostructure array; removing an uppermost insulating layer; and forming a top electrode on an uppermost nanostructure array. A sensor incorporating the nanostructure array includes top and bottom electrodes with plural layers of nanostructure array therebetween.
摘要:
An electroluminescence (EL) device and a method are provided for fabricating said device with a nanotip electrode. The method comprises: forming a bottom electrode with nanotips; forming a Si phosphor layer adjacent the nanotips; and, forming a transparent top electrode. The Si phosphor layer is interposed between the bottom and top electrodes. The nanotips may have a tip base size of about 50 nanometers, or less, a tip height in the range of 5 to 50 nm, and a nanotip density of greater than 100 nanotips per square micrometer. Typically, the nanotips are formed from iridium oxide (IrOx) nanotips. A MOCVD process forms the Ir bottom electrode. The IrOx nanotips are grown from the Ir. In one aspect, the Si phosphor layer is a SRSO layer. In response to an SRSO annealing step, nanocrystalline SRSO is formed with nanocrystals having a size in the range of 1 to 10 nm.