Abstract:
A method for processing a workpiece in a plasma reactor chamber includes coupling RF power at a first VHF frequency f1 to a plasma via one of the electrodes of the chamber, and providing a center ground return path for RF current passing directly between the ceiling electrode and the workpiece support electrode for the frequency f1. The method further includes providing a variable height edge ground annular element and providing a ground return path through the edge ground annular element for the frequency f1. The method controls the uniformity of plasma ion density distribution by controlling the distance between the variable height edge ground annular element and one of: (a) height of ceiling electrode or (b) height of workpiece support electrode.
Abstract:
A reactor is provided for removing polymer from a backside of a workpiece. The reactor includes a vacuum chamber having a ceiling, a floor and a cylindrical side wall. A workpiece support apparatus within the chamber is configured to support a workpiece thereon, so that the workpiece has its front side facing the ceiling. The support apparatus leaves at least an annular periphery of the backside of the workpiece exposed. A confinement member defines a narrow gap with the outer edge of the workpiece, the narrow gap being on the order of about 1% of workpiece diameter, the narrow gap corresponding to a boundary dividing the chamber between an upper process zone and a lower process zone. A vacuum pump is coupled to the lower process zone. A lower external plasma-generating chamber introduces a plasma by-product into the lower process zone and a supply of a polymer etch precursor gas coupled to the lower external plasma-generating chamber. An upper external plasma-generating chamber is coupled to introduce a plasma by-product into the upper process zone and a supply of a scavenger species precursor gas coupled to the upper external plasma-generating chamber.
Abstract:
A system for processing a workpiece includes a plasma immersion ion implantation reactor with an enclosure having a side wall and a ceiling and defining a chamber, and a workpiece support pedestal within the chamber having a workpiece support surface facing the ceiling and defining a process region extending generally across the wafer support pedestal and confined laterally by the side wall and axially between the workpiece support pedestal and the ceiling. The enclosure has at least a first pair of openings at generally opposite sides of the process region, and a first hollow conduit outside the chamber having first and second ends connected to respective ones of the first pair of openings, so as to provide a first reentrant path extending through the conduit and across the process region. The reactor further includes a gas distribution apparatus on or near an interior surface of the reactor for introducing a process gas containing a first species to be ion implanted into a surface layer of the workpiece, and a first RF plasma source power applicator for generating a plasma in the chamber. The system further includes a second wafer processing apparatus and a wafer transfer apparatus for transferring the workpiece between the plasma immersion implantation rector and the second wafer processing apparatus.
Abstract:
A method of forming a barrier layer for a thin film structure on a semiconductor substrate includes forming high aspect ratio openings in a base layer having vertical side walls, depositing a dielectric barrier layer comprising a dielectric compound of a barrier metal on the surfaces of the high aspect ratio openings including the vertical side walls and depositing a metal barrier layer comprising the barrier metal on the first barrier layer. The method further includes reflowing the metal barrier layer by (a) directing light from an array of continuous wave lasers into a line of light extending at least partially across the thin film structure, and (b) translating the line of light relative to the thin film structure in a direction transverse to the line of light.
Abstract:
A lift pin assembly for use in a reactor for processing a workpiece includes plural lift pins extending generally parallel with a lift direction, each of the plural lift pins having a top end for supporting a workpiece and a bottom end. A lift table faces the bottom ends of the pins and is translatable in a direction generally parallel with the lift direction. A small force detector senses a force exerted by the lift pins that is sufficiently large to indicate a chucked wafer and sufficiently small to avoid dechucking a wafer. A large force detector senses a force exerted by the lift pins in a range sufficient to de-chuck the wafer.
Abstract:
A method of forming semiconductor junctions in a semiconductor material of a workpiece includes ion implanting dopant impurities in selected regions of the semiconductor material, introducing an optical absorber material precursor gas into a chamber containing the workpiece, generating an RF oscillating toroidal plasma current in a reentrant path that includes a process zone overlying the workpiece by applying RF source power, so as to deposit a layer of an optical absorber material on the workpiece, and optically annealing the workpiece so as to activate dopant impurities in the semiconductor material.
Abstract:
A plasma reactor for processing a workpiece, including an enclosure defining a vacuum chamber, a workpiece support within the enclosure facing an overlying portion of the enclosure, the enclosure having at least first and second openings therethrough near generally opposite sides of the workpiece support. At least one hollow conduit is connected to the first and second openings. A closed torroidal path is provided through the conduit and extending between the first and second openings across the wafer surface. A process gas supply is coupled to the interior of the chamber for supplying process gas to the torroidal path. A coil antenna is coupled to an RF power source and inductively, coupled to the interior of the hollow conduit and capable of maintaining a plasma in the torroidal path.
Abstract:
A method for implanting ions in a surface layer of a workpiece includes placing the workpiece on a workpiece support in a chamber with the surface layer being in facing relationship with a ceiling of the chamber, thereby defining a processing zone between the workpiece and the ceiling, and introducing into the chamber a process gas including the species to be implanted in the surface layer of the workpiece. The method includes generating from the process gas a plasma by capacitively coupling RF source power across the workpiece support and the ceiling or the sidewall from an RF source power generator. The method further includes applying an RF bias from an RF bias generator to the workpiece support.
Abstract:
A plasma reactor is described that includes a vacuum chamber defined by an enclosure including a side wall and a workpiece support pedestal within the chamber defining a processing region overlying said pedestal. The chamber has at least a first pair of ports near opposing sides of said processing region and a first external reentrant tube is connected at respective ends thereof to the pair of ports. The reactor further includes a process gas injection apparatus (such as a gas distribution plate) and an RF power applicator coupled to the reentrant tube for applying plasma source power to process gases within the tube to produce a reentrant torroidal plasma current through the first tube and across said processing region. A magnet controls radial distribution of plasma ion density in the processing region, the magnet having an elongate pole piece defining a pole piece axis intersecting the processing region.
Abstract:
A plasma reactor for processing a workpiece includes a reactor enclosure defining a processing chamber, a base within the chamber for supporting the workpiece during processing thereof, a semiconductor window electrode overlying the base, a gas inlet system for admitting a plasma precursor gas into the chamber, an electrical terminal coupled to the semiconductor window electrode, an inductive antenna adjacent one side of the semiconductor window electrode opposite the base for coupling power into the interior of said chamber through the semiconductor window electrode.