Abstract:
A method for forming macropores in a substrate is disclosed. On a substrate a pattern of submicron features is formed. This pattern is covered with a layer, which is preferably selectively removable with respect to the substrate and the submicron features. This cover layer is removed until the submicron features are exposed. The submicron features are then etched selectively to the cover layer, thereby creating a pattern of submicron openings in this cover layer. The patterned cover layer is used as a hardmask to etch macropores in the substrate.
Abstract:
Described is a method for manufacturing a micromechanical sensor element and a micromechanical sensor element manufactured in particular using such a method which has a hollow space or a cavity and a membrane for detecting a physical variable. Different method steps are performed for manufacturing the sensor element, among other things, a structured etch mask having a plurality of holes or apertures being applied on a semiconductor substrate. Moreover, an etch process is used to create depressions in the semiconductor substrate beneath the holes in the structured etch mask. Anodization of the semiconductor material is subsequently carried out, the anodization taking place preferably starting from the created depressions in the semiconductor substrate. Due to this process, porous areas are created beneath the depressions, a lattice-like structure made of untreated, i.e., non-anodized, substrate material remaining between the porous areas and the depressions. This lattice-like structure extends preferably from the surface of the semiconductor into the depth. The etch mask for creating the depressions may be removed, optionally prior to or subsequent to the anodization. A temperature treatment is carried out for creating the hollow space and the membrane in the semiconductor substrate which forms the sensor element. During this process, the hollow space is created from the at least one area that has been rendered porous beneath a depression and the membrane above the hollow space is created from the lattice-like structure by rearranging the semiconductor material.
Abstract:
A micromechanical component includes a substrate and a cover layer deposited on the substrate, underneath the cover layer, a region of porous material being provided which mechanically supports and thermally insulates the cover layer. On the cover layer, a heating device is provided to heat the cover layer above the region; and above the region, a detector is provided to measure an electric property of a heated medium provided above the region on the cover layer.
Abstract:
In a method for manufacturing a semiconductor component having a semiconductor substrate, a flat, porous diaphragm layer and a cavity underneath the porous diaphragm layer are produced to form unsupported structures for a component. In a first approach, the semiconductor substrate may receive a doping in the diaphragm region that is different from that of the cavity. This permits different pore sizes and/or porosities to be produced, which is used in producing the cavity for improved etching gas transport. Also, mesopores may be produced in the diaphragm region and nanopores may be produced as an auxiliary structure in what is to become the cavity region.
Abstract:
In a method for producing a diaphragm sensor unit having a semiconductor material substrate, a flat diaphragm and an insulating well for thermal insulation below the diaphragm are generated, for the formation of sensor element structures for at least one sensor. The substrate, made of semiconductor material, in a specified region, which defines sensor element structures, receives a deliberately different doping from the surrounding semiconductor material, that porous semiconductor material is generated from semiconductor material sections between the regions distinguished by doping, and semiconductor material in the well region under semiconductor is rendered porous and under parts of the sensor element structure is removed and/or rendered porous.
Abstract:
A micromechanical component is described which includes a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane area (10a); a cavity (50) that is provided underneath the membrane area (10a); and one or more porous areas (150; 150null), which are provided inside the monocrystalline layer (10) and which have a doping (nnull; pnull) that is higher than that of the surrounding layer (10).
Abstract translation:描述了一种微机械部件,其包括基板(1); 单晶层(10),其设置在所述基板(1)的上方,并且具有膜区域(10a); 设置在膜区域(10a)下方的空腔(50); 以及一个或多个多孔区域(150; 150'),其设置在单晶层(10)的内部并且具有比周围层(10)的掺杂(n +; p +)更高的掺杂 )。
Abstract:
A method of producing a semiconductor component (300; 400; 500; 600; 700; 800; 900; 1000; 1100), in particular a multilayer semiconductor component, and a semiconductor component produced by this method are described, where the semiconductor component has in particular a mobile mass, i.e., an oscillator structure (501, 502; 601, 702) according to the preambles of the respective independent patent claims. To easily and inexpensively produce a micromechanical component having monocrystalline oscillator structures (501, 502; 601, 702), such as an acceleration sensor or a rotational rate sensor in particular, by surface micromechanics, a first porous layer (301; 901) is formed in the semiconductor component in a first step and a cavity, i.e., a cavern (302; 1101), is formed beneath or out of the first porous layer (301) in the semiconductor component in a second step.
Abstract:
Using phase separation technique perforated as well as non-perforated polymeric structures can be made with high aspect ratios (>5). By varying the phase separation process the properties (e.g. porous, non-porous, dense, open skin) of the moulded product can be tuned. Applications are described in the field of micro fluidics (e.g. micro arrays, electrophoretic boards), optics, polymeric solar cells, ball grid arrays, and tissue engineering.
Abstract:
In a method for producing a diaphragm sensor unit having a semiconductor material substrate, a flat diaphragm and an insulating well for thermal insulation below the diaphragm are generated, for the formation of sensor element structures for at least one sensor. The substrate, made of semiconductor material, in a specified region, which defines sensor element structures, receives a deliberately different doping from the surrounding semiconductor material, that porous semiconductor material is generated from semiconductor material sections between the regions distinguished by doping, and semiconductor material in the well region under semiconductor is rendered porous and under parts of the sensor element structure is removed and/or rendered porous.
Abstract:
In a method for producing a diaphragm sensor array having a semiconductor material substrate on which a plurality of planar diaphragm regions is arranged as a carrier layer for sensor elements, the planar diaphragm regions are thermally decoupled from one another by crosspieces made of a material having clearly better heat conductive properties compared to the diaphragm regions and the lateral surroundings of the crosspieces. Masking for a subsequent step for producing porous semiconductor material is applied at the locations of the semiconductor material substrate at which the crosspieces for the thermal decoupling are formed, and the semiconductor regions not protected by the masking are rendered porous and the diaphragm regions are produced thereupon. Instead of using porous silicon, a plasma etching process may be performed from the backside of a semiconductor material substrate. In particular, high integration densities of diaphragm sensors may be achieved with both methods. A diaphragm sensor array is produced by one of the methods.