Abstract:
An in vitro human-tissue analysis and communication system produces a quantitative diagnostic indicator for in vitro human-tissue analyzed by the system. The system includes a human-tissue-analyzer subsystem with at least one human-tissue analyzer that analyzes in vitro samples of human tissue and produces a quantitative-diagnostic indicator of each sample. The system also includes a two-way communication subsystem that allows the human-tissue-analyzer subsystem to send and receive information relevant to the quantitative-diagnostic indicators. The human-tissue-analyzer subsystem includes at least one tissue diffractometer operatively coupled to a computer database over a network, and configured for acquisition of the in vitro samples, and transfer of the corresponding human-tissue data to the computer database over the network. A computer processor is operatively coupled to the tissue diffractometer, and receives, transmits and processes the human-tissue data using a data analytics algorithm that provides a quantitative-diagnostic indicator of the in vitro sample of human tissue.
Abstract:
A system is disclosed, in accordance with one or more embodiments of the present disclosure. The system includes a metrology tool configured to acquire one or more measurements of a portion of a sample. The system includes a controller including one or more processors configured to execute program instructions causing the one or more processors to: generate a surface kinetics model output based on a surface kinetics model; determine an expected response of the surface kinetics model output to excitation by polarized light; compare the determined expected response to the one or more measurements; generate one or more metrics based on the comparison between the determined expected response and the one or more measurements of the sample; adjust one or more parameters of the surface kinetics model to generate an adjusted surface kinetics model; and apply the adjusted surface kinetics model to simulate on-sample performance during plasma processing.
Abstract:
An X-ray phase imaging apparatus includes an X-ray source; a detector; a plurality of gratings; a rotation mechanism; an image processor configured to generate a phase contrast image and to generate a preview image prior to capture of the phase contrast image; and a controller configured to control function of displaying on a display the preview image, and function of discriminatively displaying on the display an image coverage area for the phase contrast image that is associated with a relative rotation angle between the plurality of gratings and a subject.
Abstract:
A metrology system may include an optical metrology tool configured to produce an optical metrology output for one or more features on a processed substrate, and a metrology machine learning model that has been trained using a training set of (i) profiles, critical dimensions, and/or contours for a plurality of features, and (ii) optical metrology outputs for the plurality of features. The metrology machine learning model may be configured to: receive the optical metrology output from the optical metrology tool; and output the profile, critical dimension, and/or contour of the one or more features on the processed substrate.
Abstract:
Fluidic and electrofluidic devices comprising carbon nanotubes and methods of making and using the same are provided. The carbon nanotubes may be densely bundled to span an aperture in a substrate. A polymeric coating over the substrate may contain reservoir(s) etched therein, the reservoir(s) in fluid connectivity with the carbon nanotubes. X-rays may be directed through the aperture and fluid-filled carbon nanotubes with x-ray analysis providing data on fluid structure and dynamics inside the carbon nanotubes.
Abstract:
Disclosed is a characterization method of closed pores and connectivity of coal measure composite reservoirs, including collecting samples of coal seams and shales reservoirs, carrying out low-field NMR experiments and NMR freeze-thaw experiments on plunger samples and crushed samples with different particle sizes to obtain cumulative pore volume distribution and differential pore size distribution of the crushed samples, comparing crushed samples with plunger samples for optimal crushed particle sizes, and preliminarily determining a distribution range of closed pores; carrying out SAXS experiments on crushed samples to obtain size distribution and volume of total pores of 1-100 nanometers; calculating pore volume of total pores and closed pore volume in composite reservoirs by low-field NMR experiments results; carrying out non-steady overburden permeability experiments and variable factors on plunger samples of coal seams, shales and tight sandstone to characterize the connectivity under influence of pores development and lithologic combinations.