Abstract:
An object is to provide an imaging optical system having a very simple structure that can read image while maintaining excellent image quality without suffering from significant asymmetrical aberrations. An imaging optical system for image reading is adapted to form an image of image information on a surface of an original onto a line sensor while changing a relative position of the original surface and the line sensor to allow the line sensor to read the image information. The imaging optical system includes two off-axial reflecting surfaces, and the two off-axial surfaces are a plus deflecting surface and a minus deflecting surface, or a minus deflecting surface and a plus deflecting surface disposed in the mentioned order from the original surface side, where an off-axial reflecting surface that deflects a reference axis beam clockwise is defined as a minus deflecting surfaces and an off-axial reflecting surface that deflects the reference axis beam anticlockwise is defined as a plus deflecting surface.
Abstract:
An exposure device includes a light emitting portion array formed of a plurality of light emitting portions and a lens array including lens assembly members formed of lenses and a light blocking member. The light emitting portions are arranged linearly with a specific interval PD. The light emitting portion array and the lens array are arranged so that when light in parallel to the optical axis of one of the lenses is incident to the lens from a direction of the light blocking member, the lens forms a spot having a radius RS satisfying the following relationship: RS
Abstract:
An image sensor is mounted on a substrate. A base is further formed on the substrate. The base has an opening above the image sensor. A filter is fixed to the opening of the base. The filter has a projecting dam member in a peripheral portion thereof. A lens barrel holding lenses is disposed on the filter.
Abstract:
An image reader for reading an image drawn on a paper or a sheet-like recording medium, an image processor provided with the image reader, such as a copying machine, a scanner and the like, and a fiber lens to be applied to those devices. The image processor has to be large in the whole size of device to read both sides of an original. Therefore, the image processor of the present invention comprises an image reader (10a) on the upper side of transport path and an image reader (10b) on the lower side of that respectively. In order to downsize the device, it is necessary to shorten the diameter of optical fiber (140) of the fiber lens (14) installed in the imager reader as light receiving means. In this case, the optical fiber (140) is provided with a light-absorbing layer 8(143) around of the optical fiber (140) in order to restrain the crosstalk and the flare phenomenon. The illuminance of light source means (15) installed in the image reader gets smaller as the device is downsized. In case where the illuminance is small, the image quality is deteriorated by the floating of the original. Accordingly, the image reader should be provided with the light source means so as to uniform the illuminance over a specific width of the main and sub scanning directions. Therefore, it is possible to avoid the deterioration of the image quality.
Abstract:
An apparatus for acquiring and evaluating an image of a predetermined extract of a printed product removes the effects of scattered light to improve the accuracy of image evaluation. The apparatus uses a camera that has an electronic image sensor with a two-dimensional arrangement of sensor elements. An aperture stop is arranged in the beam path of the camera for shadowing a predetermined part of the image sensor. When an acquired image is read from a part of the image sensor that is not shadowed, corresponding readings from the shadowed portion of the sensor are subtracted from the acquired image to obtain intensity signals corrected for scattered light.
Abstract:
A Telecom Adapter Layer (TAL) system includes a management unit and an execution unit connected via a distributed bus. In order to acquire network element (NE) information, an external service module sends a Get Info request to the execution unit according to the reference of the execution unit, and the execution unit acquires information from an NE according to the request and returns the NE information acquired from the NE to the external service module. The execution unit can be deployed in a device other than the service module or the management unit. The TAL system may be expanded to include more than one management unit and/or execution unit. By acquiring NE information from the execution unit, the TAL system is capable to perform NE management across a firewall.
Abstract:
In an image sensing apparatus which has a camera shake correction function of performing a camera shake correction on a plurality of images sensed by an image sensing unit by extracting a partial image from each of the sensed images on the basis of correlation between the sensed images, a camera shake amount of said image sensing apparatus is detected, and said image sensing unit is exposed for a first exposure time period when the camera shake amount is equal to or less than a predetermined amount. When the camera shake amount is greater than the predetermined amount, said image sensing unit is exposed for a second exposure time period which is shorter than the first exposure time period, image signals of a plurality of images which undergo the camera shake correction are added, and the added image signals is output as one image.
Abstract:
Disclosed herein is a television apparatus including: a thin display device; a mount section to be placed in a site; a support mechanism projecting upwardly from the mount section and supporting the display device in an upper portion spaced from the mount section in a manner to allow the display device to change an attitude thereof; a first speaker mounted on the display device; a second speaker mounted on the mount section; a signal supply section configured to supply a first audio signal to the first speaker and to supply a second audio signal to the second speaker; and a signal processor configured to adjust the time difference between the timing of the first audio signal output from the signal supply section and the timing of the second audio signal output from the signal supply section.
Abstract:
Systems and methods for optically scanning multiple object planes are provided. One embodiment is a system for optically scanning multiple object planes comprising a platen and an optical head for scanning. The optical head comprises an optical delay element, a first optical sensor array positioned relative to a lens array along an optical path for receiving an optical signal corresponding to a first object plane located a first distance from the platen, and a second optical sensor array positioned relative to the lens array along another optical path for an optical signal corresponding to a second object plane located a second distance from the platen. The optical delay element is configured to increase the effective distance between the lens array and the second optical sensor.
Abstract:
A scanning module for scanning a document is provided. The scanning module comprises: a chassis; a light source on the chassis for emitting a light ray onto the document; a plurality of reflectors inside the chassis; a lens inside the chassis; an image sensing device inside the chassis, an image of the document being reflected by the plurality of reflectors and formed on the image sensing device, the image sensing device including a plurality of sensing cells; and a plurality of microlenses on the plurality of sensing cells, each of the plurality of microlenses having a top surface and a bottom surface, the top surface having a plurality of notches as an input window for changing an incident angle of the light ray, the bottom surface having a plurality of round curves as an output window for further focusing the light ray.