摘要:
Disclosed is a process for cleaning a wafer having an uneven pattern at its surface. The process includes at least: a step of cleaning the wafer; a step of substituting a cleaning liquid retained in recessed portions of the wafer with a water-repellent liquid chemical after cleaning; and a step of drying the wafer. The process is characterized in that the cleaning liquid has a boiling point of 55 to 200° C., and characterized in that the water-repellent liquid chemical used for the substitution has a temperature of not lower than 40° C. and lower than a boiling point of the water-repellent liquid chemical thereby imparting water repellency at least to surfaces of the recessed portions. With this process, it is possible to provide a cleaning process for improving the cleaning step that tends to induce a pattern collapse.
摘要:
Some embodiments include methods of forming one or more doped regions in a semiconductor substrate. Plasma doping may be used to form a first dopant to a first depth within the substrate. The first dopant may then be impacted with a second dopant to knock the first dopant to a second depth within the substrate. In some embodiments the first dopant is p-type (such as boron) and the second dopant is neutral type (such as germanium). In some embodiments the second dopant is heavier than the first dopant.
摘要:
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
摘要:
A method for generating patterned strained regions in a semiconductor device is provided. The method includes directing a light-emitting beam locally onto a surface portion of a semiconductor body; and manipulating a plurality of dislocations located proximate to the surface portion of the semiconductor body utilizing the light-emitting beam, the light-emitting beam being characterized as having a scan speed, so as to produce the patterned strained regions.
摘要:
A method of producing a silicon wafer comprises the steps of subjecting a silicon wafer, which has been sliced from a silicon single crystal ingot grown by the Czochralski method, to RTA treatment in a nitriding gas atmosphere; forming an oxide film on a surface of either side of the wafer; then forming a polysilicon layer thereon. The polysilicon layer on the front side of the wafer is removed and a wafer free of crystal defects in the surface part and with improved gettering performance is obtained. The polysilicon layer may be formed not on the surface of either side of the wafer but only on the back side thereof. It is desirable that a wafer composed of only a defect-free region is used as the source material since a defect-free layer can be stably secured in the wafer surface part.
摘要:
An annealed wafer obtained by performing rapid thermal annealing on a silicon single crystal wafer sliced from a silicon single crystal ingot in which an entire plane is an OSF region, an N region outside an OSF region, or a mixed region thereof, the silicon single crystal ingot being grown by the Czochralski method, in which RIE defects do not exist in a region having at least a depth of 1 μm from a surface, a good chip yield of a TDDB characteristic is 80% or more, and a depth of a region where an oxygen concentration is decreased due to outward diffusion is within 3 μm from the surface, and a method for producing an annealed wafer.
摘要:
The invention relates to a method for preparing a surface of a semiconductor substrate by oxidizing the surface of the semiconductor substrate to thereby transform the natural oxide into an artificial oxide and then removing the artificial oxide, in particular to obtain an oxide-free substrate surface.
摘要:
A method of making a conductive group III nitride single crystal substrate includes feeding to a seed crystal a group III raw material gas, a group V raw material gas, and a doping raw material gas diluted with N2 or Ar to have a predetermined concentration, growing a group III nitride single crystal on the seed crystal at a growth rate of greater than 450 μm/hour and not greater than 2 mm/hour, and doping the group III nitride single crystal with an impurity contained in the doping raw material gas. The doping raw material gas is diluted to be inhibited from reacting with the group V raw material gas so as to allow the group III nitride single crystal to have a specific resistance of not less than 1×10−3 Ωcm and not more than 1×10−2 Ωcm.
摘要:
An epitaxial wafer comprises a silicon substrate, a gettering epitaxial film formed thereon and containing silicon and carbon, and a main silicon epitaxial film formed on the gettering epitaxial film, in which the gettering epitaxial film has a given carbon atom concentration and carbon atoms are existent between its silicon lattices.
摘要:
Provided herein are gettering members that include a monitor substrate and a conditioning layer thereon. Also provided herein are methods of forming gettering layers and methods of performing immersion lithography processes using the same.