Abstract:
A semiconductor integrated circuit device (1000) includes: a first semiconductor chip CHP1 having a first circuit; and a second semiconductor chip (CHP2) having a second circuit and differing from the first semiconductor chip (CHP1). The semiconductor integrated circuit device (1000) further includes a control circuit (BTCNT) for controlling an operation of the first circuit and an operation of the second circuit in accordance with a control signal in a burn-in test, and the control circuit (BTCNT) controls the first circuit and the second circuit such that an amount of stress applied to the first semiconductor chip (CHP1) due to an operation of the first circuit and an amount of stress applied to the second semiconductor chip (CHP2) due to an operation of the second circuit differ from each other in the burn-in test.
Abstract:
A symmetrically-bidirectional power bipolar transistor having, on both surfaces of a semiconductor die, an n-type emitter/collector region which is completely surrounded by a first recessed field plate, which is itself completely surrounded by a p-type region including p+ contact areas. All of the p-type region is preferably bordered and surrounded by a second recessed field plate trench. The second recessed field plate trench is itself surrounded by an n-type region which is wholly or partially made of the same diffusion as the emitter/collector regions, but which is not connected to the metallization which connects the emitter/collector regions to extermal terminals.
Abstract:
The present application provides (in addition to more broadly applicable inventions) improvements which are particularly applicable to two-sided power semiconductor devices which use bipolar conduction. In this class of devices, the inventor has realized that two or three of the four (or more) semiconductor doping components which form the carrier-emission structures and control structures in the active device (array) portion of a two-sided power device can also be used, with surprising advantages, to form field-limiting rings around the active arrays on both surfaces. Most preferably, in some but not necessarily all embodiments, a shallow implant of one conductivity type is used to counterdope the surface of a well having the other conductivity type. This shallow implant, singly or in combination with another shallow implant of the same conductivity type, works to shield the well from the effects of excess charge at or above the surface of the semiconductor material.
Abstract:
Improved semiconductor devices are fabricated utilizing nickel gallide and refractory borides deposited onto a silicon carbide semiconductor substrate. Varying the deposition and annealing parameters of fabrication can provide a more thermally stable device that has greater barrier height and a low ideality. This improvement in the electrical properties allows use of Schottky barrier diodes in high power and high temperature applications. In one embodiment, a refractory metal boride layer is joined to a surface of a silicon carbide semiconductor substrate. The refractory metal boride layer is deposited on the silicon carbon semiconductor substrate at a temperature greater than 200° C. In another embodiment, a Schottky barrier diode is fabricated via deposition of nickel gallide on a SiC substrate.
Abstract:
A system for forming self-aligned contacts includes electroplating a first metal contact onto a Group III-V semiconductor substrate, the first metal contact having a greater height than width and having a straight sidewall profile, etching back the semiconductor substrate down to a base layer to expose an emitter semiconductor layer under the first metal contact, conformally depositing a dielectric layer on a vertical side of the first metal contact, a vertical side of the emitter semiconductor layer and on the base layer, anisotropically etching the dielectric layer off of the semiconductor substrate to form a dielectric sidewall spacer on the vertical side of the first metal contact and providing a second metal contact immediately adjacent the dielectric sidewall spacer.
Abstract:
In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
Abstract:
The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.
Abstract:
An interband single-electron tunnel transistor utilizes an interband single-electron tunneling phenomenon between a valence band and a conduction band through a p-n junction. The transistor includes the combination of microcapacities as fundamental constituent elements each formed by joining a p-type semiconductor material doped with an impurity in the degree of concentration with which a Fermi level overlaps a valence band and an n-type semiconductor material doped with an impurity in the degree of concentration with which the Fermi level overlaps a conduction band. The microcapacity includes a p-n junction having a junction area with which interband electron tunneling is inhibited due to Coulomb blockade.
Abstract:
A radiation-hardened semiconductor device including a bipolar transistor is disclosed in which a highly-doped layer equal in conductivity type to and larger in impurity concentration than the base region of the transistor is formed in that portion of the surface of the base region which exists beneath an insulating film, to prevent minority carriers injected into the base region, from reaching the above-mentioned surface portion. Thus, the injected minority carriers can reach a collector region without being extinguished by the recombination at the surface of the base region.
Abstract:
A semiconductor device for generating tunnel electron carries without a depleted PN junction. A heavily doped P-type semiconductor region (12) is formed in a lightly doped P-type semiconductor substrate (10), and spaced apart from a heavily doped N-type semiconductor region (18), forming a conduction channel (20) therebetween. A thin electrical insulator (14) is formed overlying the P-type region (12) and the conduction channel (20). A gate conductor (16) is formed overlying the thin insulating layer (14). Connections to the semiconductor device are provided by a substrate terminal (22) connected to the substrate (10), a gate terminal (24) connected to the gate conductor (16), and a drain terminal (26) connected to N-type semiconductor region (18). A voltage applied to the gate terminal (24) is effective to cause band bending in the P-type region (12) in excess of the band gap, thereby causing tunneling of electrons from the valence band to the conduction band. Inversion of the P-type region (12) is prevented by a drain voltage applied to the N-type region (18) which attracts conduction electrons.