Abstract:
An optical multi-ring scanner is disclosed, which comprises: a substrate; an outer ring driving element, disposed inside the substrate and configured symmetrically at two sides thereof with a pair of first arms that are connected respectively to the substrate; at least one inner ring driving element, each configured with a first inner ring driver in a manner that the first inner ring driver has a pair of second arms symmetrically disposed at a top side and a bottom side thereof while being connected to the outer ring driving element; and a mirror element, disposed inside the first inner ring driver and having a pair of third arms symmetrically disposed at a top side of a bottom side thereof; wherein, the third arm is disposed coaxial with the second arm while enabling the first arm to be disposed perpendicular to the second arm and the third arm.
Abstract:
A chip package structure including a heat dissipation substrate, a chip and a heterojunction heat conduction buffer layer is provided. The chip is disposed on the heat dissipation substrate. The heterojunction heat conduction buffer layer is disposed between the heat dissipation substrate and the chip. The heterojunction heat conduction buffer layer includes a plurality of pillars perpendicular to the heat dissipation substrate. The aspect ratio of each pillar is between about 3:1 and 50:1.
Abstract:
A communication system for supporting a positioning operation within a specific area includes a system server and a communication device. The system server receives training location data corresponding to m training locations, wherein m is a natural number greater than 1, and obtains a first set and a second set of parameters according to m sets of training location data respectively corresponding to m training locations by way of conversion. The communication device downloads a part or an entire of the first set and the second set of parameters from the system server, establishes a positioning function according to the downloaded part or entire of the first set and the second set of parameters, determines to-be-positioned location data of a to-be-positioned location, and substitutes the to-be-positioned location data into the positioning function to generate positioning result data corresponding to the to-be-positioned location of communication device.
Abstract:
A password management and authentication method suitable for an electronic device with a trusted platform module (TPM) is provided. An authentication code is automatically generated according to a TPM password, and the authentication code is stored into an authentication device selected by a user. The authentication device storing the authentication code is directly served as an electronic key of the TPM so that the user needs not to memorize any password and can access data or a hard disk (HD) encrypted by the TPM by simply connecting the authentication device to the electronic device. Thereby, it is very convenient to the user.
Abstract:
A memory, comprising a metal portion, a first metal layer and second metal oxide layer is provided. The first metal oxide layer is on the metal element, and the first metal oxide layer includes N resistance levels. The second metal oxide layer is on the first metal oxide layer, and the second metal oxide layer includes M resistance levels. The memory has X resistance levels and X is less than the summation of M and N, for minimizing a programming disturbance.
Abstract:
Systems and methods are provided that facilitate the formation of micro-mechanical structures and related systems on a laminated substrate. More particularly, a micro-mechanical device and a three-dimensional multiple frequency antenna are provided for in which the micro-mechanical device and antenna, as well as additional components, can be fabricated together concurrently on the same laminated substrate. The fabrication process includes a low temperature disposition process allowing for deposition of an insulator material at a temperature below the maximum operating temperature of the laminated substrate, as well as a planarization process allowing for the molding and planarizing of a polymer layer to be used as a form for a micro-mechanical device.
Abstract:
A vacuum system for semiconductor fabrication. The system includes a vacuum chamber for performing a semiconductor fabrication process, a vacuum source, and a piping system fluidly connecting the vacuum chamber to the vacuum source. In one embodiment, the piping system is configured without a horizontal flow path section of piping. In some embodiments, the piping system includes a first piping branch and a second piping branch. The first and second piping branches preferably have a symmetrical configuration with respect to the vacuum source. In yet other embodiments, the first and second piping branches preferably each include a throttle valve.
Abstract:
The present invention provides an inertial sensor and a producing method thereof. The inertial sensor measures the acceleration and angular acceleration of a moving object according to the sensed pressure difference (pressure gradient). The inertial sensor comprises a substrate; a circuit disposed on the substrate; a pressure device comprising an annular chamber that has a first end and a second end; a channel having a first end and a second end, with the second end being connected to the second end of the annular chamber; a pressure meter connected respectively to the first end of the annular chamber and the first end of the channel, wherein the pressure meter is electrically connected to the circuit; and a liquid filling the annular chamber. Hence, the present invention provides a highly sensitive planar inertial sensor, which simplifies the structure, makes easy the manufacturing process, and lowers the costs. The inertial sensor based on this invention can measure the acceleration and angular acceleration of a moving or rotating object, further allowing multi-axis measurements as a result of mutual integrations.
Abstract:
A method for processing a semiconductor wafer comprises measuring data indicating an amount of warpage of the wafer. At least two different voltages are determined, based on the amount of warpage. The voltages are to be applied to respective portions of the wafer by an electrostatic chuck that is to hold the wafer. The at least two different voltages are applied to hold the respective portions of the wafer while performing a fabrication process on the wafer.
Abstract:
A printed circuit board (PCB) testing system includes two gear groups, a pair of transmission belts and a driver. The pair of transmission belts geared onto and driven by the two gear groups is parallel and respectively perpendicular to the PCB transmission guideway so as to define a PCB accommodation space therebetween. Each transmission belt includes a plurality of projections. The two gear groups are rotated synchronously and inversely. During operation, the projections on the pair of transmission belts, facing the PCB accommodation space, move down, the projections move away from each other and to the bottom of the corresponding transmission belts, and a PCB supported by the pair of projections drops onto the PCB transmission guideway.