Abstract:
A method for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate. A step of increasing a built-in energy state of the substrate is also included.
Abstract:
A technique for forming films of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define donor substrate material (12) above the selected depth. Energy is provided to a selected region of the substrate to cleave a thin film of material from the donor substrate. Particles are introduced again into the donor substrate underneath a fresh surface of the donor substrate. A second thin film of material is then cleaved from the donor substrate.
Abstract:
An air bridge type structure of a bridge shape which joins to a substrate or micro-structure is manufactured by forming an air bridge type structure on a first substrate and transferring the air bridge type structure to a second substrate and/or a micro-structure formed on the second substrate. A mold substrate, comprising a recessed portion provided on the surface of the mold substrate and a peeling layer formed on the recessed portion, is used for formation of the air bridge type structure. A micro-structure can be supported by the air bridge type structure, for example, a probe for detecting tunneling current or micro-force, supported by the air bridge type structure. Accordingly, electrical connection between structures and the substrate or between the structures one to another can be performed, even if there is undercutting underneath the structures. Film stress generated upon formation of air bridge type structures can be avoided, and increasing of productivity and lowering of costs can be simultaneously achieved.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth and the particles for a pattern at the selected depth. An energy source such as pressurized fluid is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A technique for forming a film of material (12) from a donor substrate (10). The technique has a step of introducing energetic particles (22) in a selected manner through a surface of a donor substrate (10) to a selected depth (20) underneath the surface, where the particles have a relatively high concentration to define a donor substrate material (12) above the selected depth and the particles for a pattern at the selected depth. An energy source is directed to a selected region of the donor substrate to initiate a controlled cleaving action of the substrate (10) at the selected depth (20), whereupon the cleaving action provides an expanding cleave front to free the donor material from a remaining portion of the donor substrate.
Abstract:
A micro-tip is manufactured by forming a recess portion on a first substrate consisting of monocrystalline silicon for forming a tip. A peeling layer is formed on the recess portion, and contact layer is formed on at least a portion other than the peeling layer on the substrate. A tip material layer is formed on the peeling layer and the contact layer. The tip material layer on the peeling layer is transferred onto a second substrate.
Abstract:
A high temperature resist process is combined with microlithographic patterning for the production of materials, such as diamond films, that require a high temperature deposition environment. For diamond films, a high temperature silicon nitride resist can be used for microlithographic patterning of a silicon substrate to provide a uniform distribution of diamond nucleation sites and to improve diamond film adhesion to the substrate. A fine-grained nucleation geometry, established at the nucleation sites, is maintained as the diamond film is deposited over the entire substrate after the silicon nitride resist is removed. The process can be extended to form surface relief features, such as "moth eye" surfaces, and microstructures of fine-grained polycrystalline diamond, such as rotatable microgears and surface relief patterns, that have the desirable characteristics of hardness, wear resistance, thermal conductivity, chemical inertness, anti-reflectance, and a low coefficient of friction.