Abstract:
A device includes a first and a second heavily doped region in a semiconductor substrate. An insulation region has at least a portion in the semiconductor substrate, wherein the insulation region is adjacent to the first and the second heavily doped regions. A gate dielectric is formed over the semiconductor substrate and having a portion over a portion of the insulation region. A gate is formed over the gate dielectric. A floating conductor is over and vertically overlapping the insulation region. A metal line includes a portion over and vertically overlapping the floating conductor, wherein the metal line is coupled to, and carries a voltage of, the second heavily doped region.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a resistor and a voltage protection device. The resistor has a spiral shape. The resistor has a first portion and a second portion. The voltage protection device includes a first doped region that is electrically coupled to the first portion of the resistor. The voltage protection device includes a second doped region that is electrically coupled to the second portion of the resistor. The first and second doped regions have opposite doping polarities.
Abstract:
A high electron mobility transistor (HEMT) includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and is different from the first III-V compound layer in composition. A carrier channel is located between the first III-V compound layer and the second III-V compound layer. A source feature and a drain feature are disposed on the second III-V compound layer. A p-type layer is disposed on a portion of the second III-V compound layer between the source feature and the drain feature. A gate electrode is disposed on the p-type layer. The gate electrode includes a refractory metal. A depletion region is disposed in the carrier channel and under the gate electrode.
Abstract:
A semiconductor device includes an active region having a channel region and at least a wing region adjoining the channel region under the gate dielectric layer. The at least one wing region may be two symmetrical wing regions across the channel region.
Abstract:
An embodiment of the disclosure includes a semiconductor structure. The semiconductor structure includes a first III-V compound layer. A second III-V compound layer is disposed on the first III-V compound layer and different from the first III-V compound layer in composition. An interface is defined between the first III-V compound layer and the second III-V compound layer. A gate is disposed on the second III-V compound layer. A source feature and a drain feature are disposed on opposite side of the gate. Each of the source feature and the drain feature includes a corresponding metal feature at least partially embedded in the second III-V compound layer. A corresponding intermetallic compound underlies each metal feature. Each intermetallic compound contacts a carrier channel located at the interface.
Abstract:
Provided is a high voltage semiconductor device that includes a PIN diode structure formed in a substrate. The PIN diode includes an intrinsic region located between a first doped well and a second doped well. The first and second doped wells have opposite doping polarities and greater doping concentration levels than the intrinsic region. The semiconductor device includes an insulating structure formed over a portion of the first doped well. The semiconductor device includes an elongate resistor device formed over the insulating structure. The resistor device has first and second portions disposed at opposite ends of the resistor device, respectively. The semiconductor device includes an interconnect structure formed over the resistor device. The interconnect structure includes: a first contact that is electrically coupled to the first doped well and a second contact that is electrically coupled to a third portion of the resistor located between the first and second portions.
Abstract:
Provided is a semiconductor device. The semiconductor device includes a resistor and a voltage protection device. The resistor has a spiral shape. The resistor has a first portion and a second portion. The voltage protection device includes a first doped region that is electrically coupled to the first portion of the resistor. The voltage protection device includes a second doped region that is electrically coupled to the second portion of the resistor. The first and second doped regions have opposite doping polarities.
Abstract:
Provided is a high voltage semiconductor device. The high voltage semiconductor device includes a transistor having a gate, a source, and a drain. The source and the drain are formed in a doped substrate and are separated by a drift region of the substrate. The gate is formed over the drift region and between the source and the drain. The transistor is configured to handle high voltage conditions that are at least a few hundred volts. The high voltage semiconductor device includes a dielectric structure formed between the source and the drain of the transistor. The dielectric structure protrudes into and out of the substrate. Different parts of the dielectric structure have uneven thicknesses. The high voltage semiconductor device includes a resistor formed over the dielectric structure. The resistor has a plurality of winding segments that are substantially evenly spaced apart.
Abstract:
The present disclosure provides a method for fabricating a high-voltage semiconductor device. The method includes designating first, second, and third regions in a substrate. The first and second regions are regions where a source and a drain of the semiconductor device will be formed, respectively. The third region separates the first and second regions. The method further includes forming a slotted implant mask layer at least partially over the third region. The method also includes implanting dopants into the first, second, and third regions. The slotted implant mask layer protects portions of the third region therebelow during the implanting. The method further includes annealing the substrate in a manner to cause diffusion of the dopants in the third region.
Abstract:
A high voltage metal-oxide-semiconductor laterally diffused device (HV LDMOS), particularly an insulated gate bipolar junction transistor (IGBT), and a method of making it are provided in this disclosure. The device includes a semiconductor substrate, a gate structure formed on the substrate, a source and a drain formed in the substrate on either side of the gate structure, a first doped well formed in the substrate, and a second doped well formed in the first well. The gate, source, second doped well, a portion of the first well, and a portion of the drain structure are surrounded by a deep trench isolation feature and an implanted oxygen layer in the silicon substrate.