Abstract:
A method of processing a semiconductor device is provided. The method includes providing a semiconductor device supported by a carrier structure. The carrier structure defines a plurality of vias from a first surface of the carrier structure adjacent the semiconductor device to a second surface of the carrier structure. The method also includes extending a conductor through one of the vias such that a first end of the conductor at least partially extends below the second surface. The method also includes electrically coupling another portion of the conductor to a portion of the semiconductor device.
Abstract:
A interconnect assembly features a prefabricated interconnect structure metallurgically bonded to a terminal of a larger structure. Fabrication of the interconnect structure's independently and separate from the larger structure enables the use of economic mass fabrication techniques that are well-known for miniature scale sheet metal parts. During fabrication, positioning and attachment, each interconnect structure is combined with and/or held in a carrier structure from which it is separated after attachment to the terminal. The interconnect structure is configured such that an attachment tool may be brought into close proximity to the attachment interface between the interconnect structure and the terminal for a short and direct transmission of bonding energy onto the attachment interface. The attachment interface provides for an electrically conductive and a bending stress opposing mechanical connection between the interconnect structure and the terminal. The interconnect assembly is preferably part of a probe apparatus.
Abstract:
A interconnect assembly features a prefabricated interconnect structure metallurgically bonded to a terminal of a larger structure. Fabrication of the interconnect structure's independently and seperate from the larger structure enables the use of economic mass fabrication techniques that are well-known for miniature scale sheet metal parts. During fabrication, positioning and attachment, each interconnect structure is combined with and/or held in a carrier structure from which it is separated after attachment to the terminal. The interconnect structure is configured such that an attachment tool may be brought into close proximity to the attachment interface between the interconnect structure and the terminal for a short and direct transmission of bonding energy onto the attachment interface. The attachment interface provides for an electrically conductive and a bending stress opposing mechanical connection between the interconnect structure and the terminal. The interconnect assembly is preferably part of a probe apparatus.
Abstract:
A wire bonding machine for bonding a wire to a semiconductor device. The wire bonding machine includes a wire bonding head having a bonding tool mounted to it. The bonding tool is adapted to attach a wire end to a semiconductor device. A bonding head conveyance system translates the bonding tool in a vertical direction and translates the bonding tool along a first horizontal axis. A work table supports at least one semiconductor device to be wire bonded. A work table conveyance system translates the semiconductor device along a second horizontal axis.
Abstract:
A wire bonding system for attaching a wire between bonding pads on a semiconductor device and a substrate. The wire bonding system includes a frame and a bonding head attached to the frame and adapted to attach a wire between bonding pads on a semiconductor device and a substrate. The wire bonding system also includes a laser cleaning mechanism mounted to the frame, the laser cleaning mechanism including a laser for emitting laser light adapted to irradiate contaminants on a bonding pad, the laser mechanism located on the frame so as to emit light onto a bonding pad of at least one of the semiconductor device and the substrate prior to the bonding head attaching the wire thereto.
Abstract:
An apparatus for manipulating a work piece in connection with a wire bonding machine including at least one magazine handler is provided. The apparatus includes a first conveyor system configured to receive work pieces from the at least one magazine handler, and a second conveyor system configured to receive work pieces from the at least one magazine handler. The apparatus is adapted such that the second conveyor system prepares a work piece for a wire bonding operation by a wire bonding tool concurrent with the first conveyor system supporting another work piece during a wire bonding operation of the another work piece using the wire bonding tool.
Abstract:
A interconnect assembly features a prefabricated interconnect structure metallurgically bonded to a terminal of a larger structure. Fabrication of the interconnect structure's independently and separate from the larger structure enables the use of economic mass fabrication techniques that are well-known for miniature scale sheet metal parts. During fabrication, positioning and attachment, each interconnect structure is combined with and/or held in a carrier structure from which it is separated after attachment to the terminal. The interconnect structure is configured such that an attachment tool may be brought into close proximity to the attachment interface between the interconnect structure and the terminal for a short and direct transmission of bonding energy onto the attachment interface. The attachment interface provides for an electrically conductive and a bending stress opposing mechanical connection between the interconnect structure and the terminal. The interconnect assembly is preferably part of a probe apparatus.
Abstract:
A method and system for providing different images representing plural depths of field of an electronic device. The vision system has a beamsplitter for receiving an image of the device illuminated by the at least one light source, the beamsplitter providing one of the plurality of images of the device based in a wavelength of the light source; an aperture having a plurality of effective diameters based on the wavelength of light from the at least one light source, the aperture determining a depth of field of the image of the device; and an optical element for receiving the image of the device, the optical element magnifying the image by a predetermined magnification factor to produce a magnified image having the determined depth of field.